- Home
- Members Area
- 1 Welcome
- 2 Introduction
- 3 General
- 3.1 Concrete and its reinforcement
- 3.1.1 Compliance
- 3.1.2 Provision of information
- 3.1.3 Storage of materials
- 3.1.4 Site-mixed concrete
- 3.1.5 Ready-mixed concrete
- 3.1.6 Concrete specification
- 3.1.7 Admixtures
- 3.1.8 Special types of concrete
- 3.1.9 Design of reinforced concrete
- 3.1.10 Installation of reinforcement
- 3.1.11 Blinding concrete
- 3.1.12 Formwork
- 3.1.13 Before concreting
- 3.1.14 Casting
- 3.1.15 Curing
- 3.1.16 Testing
- 3.1.17 Glossary
- 3.2 Cold weather working
- 3.3 Timber preservation (natural solid timber)
- 3.1 Concrete and its reinforcement
- 4 Foundations
- 4.1 Land quality – managing ground conditions
- 4.1.1 Compliance
- 4.1.2 Initial Assessment – desk study (all sites)
- 4.1.3 Initial Assessment – walkover survey (all sites)
- 4.1.4 Initial Assessment – results
- 4.1.5 Basic Investigation (sites where hazards are not identified or suspected)
- 4.1.6 Detailed Investigation (sites where hazards are identified or suspected)
- 4.1.7 Managing the risks (sites where hazards are found)
- 4.1.8 Unforeseen hazards
- 4.1.9 Documentation and verification
- 4.1.10 Guidance for investigations
- 4.1.11 Further information
- 4.2 Building near trees
- 4.2.1 Compliance
- 4.2.2 Provision of information
- 4.2.3 Building near trees
- 4.2.4 The effects of trees on shrinkable soils
- 4.2.5 Foundations in all soil types
- 4.2.6 Excavation of foundations
- 4.2.7 Foundations in shrinkable soils
- 4.2.8 Design and construction of foundations in shrinkable soils
- 4.2.9 Foundation depths for specific conditions in shrinkable soils
- 4.2.10 Heave precautions
- 4.2.11 New drainage
- 4.2.12 Foundation depth charts
- 4.2.13 Foundation depth tables
- 4.2.14 Example
- 4.2.15 Further information
- 4.3 Strip and trench fill foundations
- 4.3.1 Compliance
- 4.3.2 Provision of information
- 4.3.3 Ground conditions
- 4.3.4 Hazardous ground
- 4.3.5 Setting out
- 4.3.6 Services and drainage
- 4.3.7 Safe transmission of loads
- 4.3.8 Sloping ground and stepped foundations
- 4.3.9 Excavations
- 4.3.10 Reinforcement
- 4.3.11 Concrete
- 4.3.12 Movement joints
- 4.3.13 Construction joints
- 4.4 Raft, pile, pier and beam foundations
- 4.4.1 Compliance
- 4.4.2 Provision of information
- 4.4.3 Site conditions
- 4.4.4 Hazardous ground
- 4.4.5 Services and drainage
- 4.4.6 Safe transmission of loads
- 4.4.7 Construction
- 4.4.8 Engineer checks
- 4.4.9 Compressible materials
- 4.4.10 Reinforcement
- 4.4.11 Concrete
- 4.4.12 Movement joints
- 4.4.13 Resistance to moisture
- 4.5 Vibratory ground improvement techniques
- 4.5.1 Compliance
- 4.5.2 Hazardous sites and ground hazards
- 4.5.3 Desk study and site investigation
- 4.5.4 Confirmation of suitability for treatment
- 4.5.5 Suitability of ground conditions
- 4.5.6 Compatibility of the ground, design and treatment
- 4.5.7 Acceptable methods
- 4.5.8 Materials for use as fill
- 4.5.9 Granular material
- 4.5.10 Sitework
- 4.5.11 Adjacent excavations
- 4.5.12 Verification of completed treatment
- 4.1 Land quality – managing ground conditions
- 5 Substructure, Ground Floors, Drainage and Basements
- 5.1 Substructure and ground bearing floors
- 5.1.1 Compliance
- 5.1.2 Provision of information
- 5.1.3 Transfer of loads
- 5.1.4 Ground conditions
- 5.1.5 Services and drainage
- 5.1.6 Ground below fill
- 5.1.7 Fill below floors
- 5.1.8 Infill up to 600mm deep
- 5.1.9 Materials used for fill
- 5.1.10 Harmful or toxic materials
- 5.1.11 Regulatory solutions
- 5.1.12 Walls below the DPC
- 5.1.13 Durability
- 5.1.14 Mortar
- 5.1.15 Wall ties
- 5.1.16 Blinding
- 5.1.17 Ground floor slab and concrete
- 5.1.18 Laying the ground-bearing floor slab
- 5.1.19 Damp proof course
- 5.1.20 Damp proofing concrete floors
- 5.1.21 Thermal insulation
- 5.1.22 Installation of insulation
- 5.1.23 Further information
- 5.2 Suspended ground floors
- 5.2.1 Compliance
- 5.2.2 Provision of information
- 5.2.3 Contaminants
- 5.2.4 Proprietary systems
- 5.2.5 Transfer of loads: concrete floors
- 5.2.6 Reinforced concrete
- 5.2.7 Construction of suspended concrete ground floors
- 5.2.8 Transfer of loads: timber floors
- 5.2.9 Thermal insulation and cold bridging
- 5.2.10 Damp-proofing and ventilation
- 5.2.11 Floor finishes
- 5.2.12 Floor decking
- 5.3 Drainage below ground
- 5.3.1 Compliance
- 5.3.2 Provision of information
- 5.3.3 Preliminary work
- 5.3.4 Foul and surface water disposal
- 5.3.5 Drainage system performance
- 5.3.6 Ground water drainage
- 5.3.7 Design to avoid damage and blockages
- 5.3.8 Durability
- 5.3.9 Septic tanks and cesspools
- 5.3.10 Septic tanks
- 5.3.11 Surface water soakaways
- 5.3.12 Component requirements
- 5.3.13 Excavation
- 5.3.14 Protection of pipework
- 5.3.15 Laying pipework
- 5.3.16 Protection of work
- 5.3.17 Testing
- 5.4 Waterproofing of basements and other below ground structures
- 5.1 Substructure and ground bearing floors
- 6 Superstructure (excluding roofs)
- 6.1 External masonry walls
- 6.1.1 Compliance
- 6.1.2 Provision of information
- 6.1.3 Structural design
- 6.1.4 Fire resistance
- 6.1.5 Acoustic resistance
- 6.1.6 Exposure
- 6.1.7 Thermal insulation
- 6.1.8 Concrete blocks
- 6.1.9 Bricks
- 6.1.10 Stone masonry
- 6.1.11 Construction of masonry walls
- 6.1.12 Lintels
- 6.1.13 Materials suitable for mortar
- 6.1.14 Mortar
- 6.1.15 Render
- 6.1.16 Cladding
- 6.1.17 DPCs and cavity trays
- 6.1.18 Wall ties
- 6.1.19 Handling materials
- 6.1.20 Cold weather working
- 6.2 External timber framed walls
- 6.2.1 Compliance
- 6.2.2 Provision of information
- 6.2.3 Design and certification
- 6.2.4 Load-bearing walls
- 6.2.5 Fixing the frame
- 6.2.6 Nails and staples
- 6.2.7 Sheathing
- 6.2.8 Differential movement
- 6.2.9 Fire resistance
- 6.2.10 Protection from moisture
- 6.2.11 Timber preservation
- 6.2.12 Vapour control layers
- 6.2.13 Breather membranes
- 6.2.14 Wall ties and fixings
- 6.2.15 Insulation
- 6.3 Internal walls
- 6.3.1 Compliance
- 6.3.2 Provision of information
- 6.3.3 Supporting load-bearing internal walls
- 6.3.4 Masonry walls
- 6.3.5 Load-bearing timber walls
- 6.3.6 Fire resistance
- 6.3.7 Sound insulation
- 6.3.8 Partitions: internal non load-bearing
- 6.3.9 Construction of timber partitions
- 6.3.10 Plasterboard
- 6.3.11 Construction of proprietary systems
- 6.3.12 Damp-proof courses
- 6.3.13 Components
- 6.4 Timber and concrete upper floors
- 6.4.1 Compliance
- 6.4.2 Provision of information
- 6.4.3 Upper floor design
- 6.4.4 Fire spread
- 6.4.5 Sound insulation
- 6.4.6 In-situ concrete floors and concreting
- 6.4.7 Precast concrete
- 6.4.8 Timber joist spans
- 6.4.9 Timber joists
- 6.4.10 Construction of timber floors
- 6.4.11 Joists supported by intermediate walls
- 6.4.12 Joists connected to steel
- 6.4.13 Joists into hangers
- 6.4.14 Timber joist and restraint strap
- 6.4.15 Strutting
- 6.4.16 Joists and openings
- 6.4.17 Multiple joists
- 6.4.18 Notching and drilling
- 6.4.19 Floor decking
- 6.4.20 Floating floors or floors between homes
- 6.5 Steelwork
- 6.6 Staircases
- 6.6.1 Compliance
- 6.6.2 Provision of information
- 6.6.3 Fire precautions
- 6.6.4 Lighting
- 6.6.5 Safe transmission of loads
- 6.6.6 Headroom and width
- 6.6.7 Design of steps
- 6.6.8 Landings
- 6.6.9 Guarding
- 6.6.10 Handrails
- 6.6.11 Timber staircases
- 6.6.12 Timber and wood-based products
- 6.6.13 Finished joinery
- 6.6.14 Concrete staircases
- 6.6.15 Steel staircases
- 6.6.16 Staircase units
- 6.6.17 Fixings
- 6.6.18 Protection
- 6.7 Doors, windows and glazing
- 6.8 Fireplaces, chimneys and flues
- 6.8.1 Compliance
- 6.8.2 Provision of information
- 6.8.3 Solid fuel – fireplaces and hearths
- 6.8.4 Solid fuel – combustion air
- 6.8.5 Solid fuel – flue pipes
- 6.8.6 Solid fuel – Chimneys
- 6.8.7 Solid fuel – outlets and terminals
- 6.8.8 Gas – fireplaces and hearths
- 6.8.9 Gas – combustion air
- 6.8.10 Gas – flue pipes
- 6.8.11 Gas – chimneys
- 6.8.12 Gas – outlets and terminals
- 6.8.13 Oil – fireplaces and hearths
- 6.8.14 Oil – combustion air
- 6.8.15 Oil – flue pipes
- 6.8.16 Oil – chimneys
- 6.8.17 Oil – outlets and terminals
- 6.8.18 All – fireplaces and hearths
- 6.8.19 All – fireplace surrounds
- 6.8.20 All – flue pipes
- 6.8.21 All – flue liners
- 6.8.22 All – flues
- 6.8.23 All – chimneys
- 6.8.24 Masonry
- 6.8.25 Mortar
- 6.8.26 DPC
- 6.8.27 Flashings
- 6.8.28 Terminals
- 6.8.29 Flue testing
- 6.8.30 Further information
- 6.9 Curtain walling and cladding
- 6.9.1 Compliance
- 6.9.2 Provision of information
- 6.9.3 Certification
- 6.9.4 Loads
- 6.9.5 Support and fixings
- 6.9.6 Durability
- 6.9.7 Interfaces
- 6.9.8 Insulation
- 6.9.9 Damp proofing and vapour control
- 6.9.10 Installation and tolerances
- 6.9.11 Electrical continuity and earth bonding
- 6.9.12 Maintenance
- 6.9.13 Glazing, gaskets and sealants
- 6.9.14 Cavity barriers and firestops
- 6.9.15 Ventilation screens
- 6.9.16 Handling and storage
- 6.9.17 Curtain walling
- 6.9.18 Rainscreen cladding
- 6.9.19 Insulated render and brick slip cladding
- 6.10 Light steel framed walls and floors
- 6.10.1 Compliance
- 6.10.2 Provision of information
- 6.10.3 Certification
- 6.10.4 Load-bearing walls and floors
- 6.10.5 Control of fire
- 6.10.6 Acoustic performance
- 6.10.7 Steel and fixings
- 6.10.8 Detailing of steel joist
- 6.10.9 Restraint
- 6.10.10 Fixing floor decking and ceilings
- 6.10.11 Moisture control
- 6.10.12 Insulation
- 6.10.13 Vapour control layers
- 6.10.14 Breather membranes
- 6.10.15 Construction of load-bearing walls and external infill walls
- 6.10.16 Construction of non load-bearing walls
- 6.10.17 Panels, cladding and boards
- 6.10.18 Wall ties
- 6.10.19 Services
- 6.10.20 Further information
- 6.11 Render
- 6.1 External masonry walls
- 7 Roofs
- 7.1 Flat roofs and balconies
- 7.1.1 Compliance
- 7.1.2 Provision of information
- 7.1.3 Flat roof and balcony design
- 7.1.4 Timber and timber decks
- 7.1.5 Profiled metal decks
- 7.1.6 Concrete decks
- 7.1.7 Thermal insulation and vapour control
- 7.1.8 Waterproofing and surface treatments
- 7.1.9 Green and proprietary roofs
- 7.1.10 Detailing of flat roofs
- 7.1.11 Accessible thresholds
- 7.1.12 Drainage
- 7.1.13 Guarding to balconies
- 7.2 Pitched roofs
- 7.2.1 Compliance
- 7.2.2 Provision of information
- 7.2.3 Design of pitched roofs
- 7.2.4 Protection of trusses
- 7.2.5 Durability
- 7.2.6 Wall plates
- 7.2.7 Joints and connections
- 7.2.8 Restraint
- 7.2.9 Bracing for trussed rafter roofs
- 7.2.10 Strutting for attic trusses and cut roofs that form a floor
- 7.2.11 Support for equipment
- 7.2.12 Access
- 7.2.13 Dormer construction
- 7.2.14 Underlay and sarking
- 7.2.15 Ventilation, vapour control and insulation
- 7.2.16 Firestopping and cavity barriers
- 7.2.17 Battens
- 7.2.18 Roof coverings
- 7.2.19 Fixing tiles and slates
- 7.2.20 Weathering details
- 7.2.21 Valleys and hidden gutters
- 7.2.22 Drainage
- 7.2.23 Fascias and trim
- 7.2.24 Spandrel panels
- 7.1 Flat roofs and balconies
- 8 Services
- 8.1 Internal services
- 8.1.1 Compliance
- 8.1.2 Provision of information
- 8.1.3 Water services and supply
- 8.1.4 Cold water storage
- 8.1.5 Hot water service
- 8.1.6 Soil and waste systems
- 8.1.7 Electrical services and installations
- 8.1.8 Gas service installations
- 8.1.9 Meters
- 8.1.10 Space heating systems
- 8.1.11 Installation
- 8.1.12 Extract ducts
- 8.1.13 Testing and commissioning
- 8.2 Low or zero carbon technologies
- 8.2.1 Compliance
- 8.2.2 Provision of information
- 8.2.3 Clean Air Act
- 8.2.4 System design
- 8.2.5 Access
- 8.2.6 Handling, storage and protection
- 8.2.7 Sequence of work
- 8.2.8 Location
- 8.2.9 Building integration
- 8.2.10 Fixing
- 8.2.11 Electrical installation requirements
- 8.2.12 Pipes, insulation and protection from cold
- 8.2.13 Ground collectors
- 8.2.14 Fuel storage
- 8.2.15 Safe discharge
- 8.2.16 Testing and commissioning
- 8.2.17 Handover requirements
- 8.2.18 Further information
- 8.3 Mechanical ventilation with heat recovery
- 8.1 Internal services
- 9 Finishes
- 10 External works
- 10.1 Garages
- 10.2 Drives, paths and landscaping
- 10.2.1 Compliance
- 10.2.2 Provision of information
- 10.2.3 Stability
- 10.2.4 Freestanding walls and retaining structures
- 10.2.5 Guarding and steps
- 10.2.6 Drives, paths and landscaping
- 10.2.7 Materials
- 10.2.8 Garden areas within 3m of the home
- 10.2.9 Garden areas
- 10.2.10 Timber decking
- 10.2.11 Landscaping
6.10.4Load-bearing walls and floors
Walls and floors shall be designed to support and transfer loads safely and without undue movement. Issues to be taken into account include:
- structural walls
- resistance to racking forces
- structural floors.
Structural walls
The structural design of the building should ensure adequate resistance to loadings including dead loads, imposed loads, wind loads and snow loads, in accordance with:
- BS EN 1991-1-1
- BS EN 1991-1-3
- BS EN 1991-1-4.
- be a minimum of 36mm wide
- have a maximum spacing of 600mm.
- provided to any opening in load-bearing panels where one or more studs is cut or displaced to form the opening, but are not required where an opening falls between studs
- securely fixed to supporting studs to ensure that loads are fully transferred.
- fixed to the head rail of wall panels onto which timber roof trusses bear
- sized (including the head rail), to permit single timber trusses to be positioned at any point between studs.
- prevent load transfer onto a chimney or flue (a joint should be constructed between the frame and any chimney or flue)
- not be bridged by non load-bearing walls.
- design to BS EN 1993-1-1, or
- be tested to BS EN 594.
- have performance characteristics determined in accordance with BS EN 13986 Table 7
- be suitable for use in humid conditions to BS EN 636
- be at least 5.5mm thick
- be appropriate to the exposure of the building.
- internal bracing
- crossed flat bracing
- internal sheathing board
- external lining board
- rigid frame action.
- be designed to resist loading in accordance with BS EN 1991-1-1
- have a maximum joist spacing of 600mm centres
- have suitably sized trimmers around floor openings.
- web cleats
- direct attachment to wall studs, or
- bearing onto the supporting structure (bearing stiffeners may be required).
- imposed load, limited to (span/450).
- dead and imposed loads, limited to the lesser of (span/350) or 15mm.
- The natural frequency of the floor should be limited to 8Hz for dead load plus 0.2 x imposed load. This can be achieved by limiting the deflection of a single joist to 5mm for the given loading.
- The deflection of the floor (i.e. a series of joists plus the floor decking) when subject to a 1kN point load should be limited to the values in Table 2.
- overall floor construction
- number of effective joists that are deemed to share the applied 1kN point load (typical values are given in Table 3).
- 50mm concrete or 50mm fine aggregate on a polyethylene membrane laid on 50mm sand blinding, or
- 100mm concrete.
- openings on at least two opposite sides
- 1500mm2 per metre run of external wall or 500mm2 per m2 of floor area (whichever provides the largest area).
Individual studs should generally:
Alternative stud arrangements should be agreed with NHBC.
Lintels should be:
At openings, additional studs may be required to provide support or fixing points for cladding, and wall linings.
Multiple studs should be included to support multiple joists, unless otherwise specified by the designer.
Where panels are diagonally braced with a flat strip, the brace should be fixed to each stud at the intersection to minimise bowing in the bracing member.
Account should be taken of uplift forces, and proper holding-down devices should be provided to resist uplift where necessary.
The anchorage for holding-down devices should have sufficient mass to resist the uplift forces (See Clause 6.10.15).
Timber wall plates should be:
Movement joints should:
Resistance to racking forces
Methods to resist racking forces should comply with:
Plywood sheathing should:
Cement bonded particle board sheathing should be in accordance with BS EN 634 and BS EN 13986.
Oriented strand board should be OSB3 to BS EN 300 and have a minimum thickness of 8mm. Proprietary sheathing materials should be in accordance with Technical Requirement R3.
Wall panels may provide resistance to racking forces using one or more of the following techniques:
Structural floors
Floors should:
Light steel joists should be fixed to supporting walls by either:
The in-service performance of light steel joists should be controlled by the following four serviceability criteria.
Static criteria for the maximum permissible deflection of a single joist due to:
Dynamic criteria:
Table 2: Deflection with point loads of 1kN
Span (m) | Maximum deflection (mm) |
---|---|
3.5 | 1.7 |
3.8 | 1.6 |
4.2 | 1.5 |
4.6 | 1.4 |
5.3 | 1.3 |
6.2 | 1.2 |
The deflection of a single joist is dependent on the:
Table 3: Typical values
Floor configuration | Number of effective joists: 400mm joist centres | 600mm joist centres |
---|---|---|
Chipboard, plywood or oriented strand board | 2.5 | 2.35 |
Built-up acoustic floor | 4 | 3.5 |
Ground floor construction
Provision should be made to prevent ground moisture affecting light steel floors. This can be achieved by either:
Where necessary, oversite concrete should be protected against sulfate attack by the use of a polyethylene sheet DPM, not less than 1200 gauge (0.3mm) or 1000 gauge where assessed in accordance with Technical Requirement R3, properly lapped.