- Home
- Members Area
- 1 Welcome
- 2 Introduction
- 3 General
- 3.1 Concrete and its reinforcement
- 3.1.1 Compliance
- 3.1.2 Provision of information
- 3.1.3 Storage of materials
- 3.1.4 Site-mixed concrete
- 3.1.5 Ready-mixed concrete
- 3.1.6 Concrete specification
- 3.1.7 Admixtures
- 3.1.8 Special types of concrete
- 3.1.9 Design of reinforced concrete
- 3.1.10 Installation of reinforcement
- 3.1.11 Blinding concrete
- 3.1.12 Formwork
- 3.1.13 Before concreting
- 3.1.14 Casting
- 3.1.15 Curing
- 3.1.16 Testing
- 3.1.17 Glossary
- 3.2 Cold weather working
- 3.3 Timber preservation (natural solid timber)
- 3.1 Concrete and its reinforcement
- 4 Foundations
- 4.1 Land quality – managing ground conditions
- 4.1.1 Compliance
- 4.1.2 Initial Assessment – desk study (all sites)
- 4.1.3 Initial Assessment – walkover survey (all sites)
- 4.1.4 Initial Assessment – results
- 4.1.5 Basic Investigation (sites where hazards are not identified or suspected)
- 4.1.6 Detailed Investigation (sites where hazards are identified or suspected)
- 4.1.7 Managing the risks (sites where hazards are found)
- 4.1.8 Unforeseen hazards
- 4.1.9 Documentation and verification
- 4.1.10 Guidance for investigations
- 4.1.11 Further information
- 4.2 Building near trees
- 4.2.1 Compliance
- 4.2.2 Provision of information
- 4.2.3 Building near trees
- 4.2.4 The effects of trees on shrinkable soils
- 4.2.5 Foundations in all soil types
- 4.2.6 Excavation of foundations
- 4.2.7 Foundations in shrinkable soils
- 4.2.8 Design and construction of foundations in shrinkable soils
- 4.2.9 Foundation depths for specific conditions in shrinkable soils
- 4.2.10 Heave precautions
- 4.2.11 New drainage
- 4.2.12 Foundation depth charts
- 4.2.13 Foundation depth tables
- 4.2.14 Example
- 4.2.15 Further information
- 4.3 Strip and trench fill foundations
- 4.3.1 Compliance
- 4.3.2 Provision of information
- 4.3.3 Ground conditions
- 4.3.4 Hazardous ground
- 4.3.5 Setting out
- 4.3.6 Services and drainage
- 4.3.7 Safe transmission of loads
- 4.3.8 Sloping ground and stepped foundations
- 4.3.9 Excavations
- 4.3.10 Reinforcement
- 4.3.11 Concrete
- 4.3.12 Movement joints
- 4.3.13 Construction joints
- 4.4 Raft, pile, pier and beam foundations
- 4.4.1 Compliance
- 4.4.2 Provision of information
- 4.4.3 Site conditions
- 4.4.4 Hazardous ground
- 4.4.5 Services and drainage
- 4.4.6 Safe transmission of loads
- 4.4.7 Construction
- 4.4.8 Engineer checks
- 4.4.9 Compressible materials
- 4.4.10 Reinforcement
- 4.4.11 Concrete
- 4.4.12 Movement joints
- 4.4.13 Resistance to moisture
- 4.5 Vibratory ground improvement techniques
- 4.5.1 Compliance
- 4.5.2 Hazardous sites and ground hazards
- 4.5.3 Desk study and site investigation
- 4.5.4 Confirmation of suitability for treatment
- 4.5.5 Suitability of ground conditions
- 4.5.6 Compatibility of the ground, design and treatment
- 4.5.7 Acceptable methods
- 4.5.8 Materials for use as fill
- 4.5.9 Granular material
- 4.5.10 Sitework
- 4.5.11 Adjacent excavations
- 4.5.12 Verification of completed treatment
- 4.1 Land quality – managing ground conditions
- 5 Substructure, Ground Floors, Drainage and Basements
- 5.1 Substructure and ground bearing floors
- 5.1.1 Compliance
- 5.1.2 Provision of information
- 5.1.3 Transfer of loads
- 5.1.4 Ground conditions
- 5.1.5 Services and drainage
- 5.1.6 Ground below fill
- 5.1.7 Fill below floors
- 5.1.8 Infill up to 600mm deep
- 5.1.9 Materials used for fill
- 5.1.10 Harmful or toxic materials
- 5.1.11 Regulatory solutions
- 5.1.12 Walls below the DPC
- 5.1.13 Durability
- 5.1.14 Mortar
- 5.1.15 Wall ties
- 5.1.16 Blinding
- 5.1.17 Ground floor slab and concrete
- 5.1.18 Laying the ground-bearing floor slab
- 5.1.19 Damp proof course
- 5.1.20 Damp proofing concrete floors
- 5.1.21 Thermal insulation
- 5.1.22 Installation of insulation
- 5.1.23 Further information
- 5.2 Suspended ground floors
- 5.2.1 Compliance
- 5.2.2 Provision of information
- 5.2.3 Contaminants
- 5.2.4 Proprietary systems
- 5.2.5 Transfer of loads: concrete floors
- 5.2.6 Reinforced concrete
- 5.2.7 Construction of suspended concrete ground floors
- 5.2.8 Transfer of loads: timber floors
- 5.2.9 Thermal insulation and cold bridging
- 5.2.10 Damp-proofing and ventilation
- 5.2.11 Floor finishes
- 5.2.12 Floor decking
- 5.3 Drainage below ground
- 5.3.1 Compliance
- 5.3.2 Provision of information
- 5.3.3 Preliminary work
- 5.3.4 Foul and surface water disposal
- 5.3.5 Drainage system performance
- 5.3.6 Ground water drainage
- 5.3.7 Design to avoid damage and blockages
- 5.3.8 Durability
- 5.3.9 Septic tanks and cesspools
- 5.3.10 Septic tanks
- 5.3.11 Surface water soakaways
- 5.3.12 Component requirements
- 5.3.13 Excavation
- 5.3.14 Protection of pipework
- 5.3.15 Laying pipework
- 5.3.16 Protection of work
- 5.3.17 Testing
- 5.4 Waterproofing of basements and other below ground structures
- 5.1 Substructure and ground bearing floors
- 6 Superstructure (excluding roofs)
- 6.1 External masonry walls
- 6.1.1 Compliance
- 6.1.2 Provision of information
- 6.1.3 Structural design
- 6.1.4 Fire resistance
- 6.1.5 Acoustic resistance
- 6.1.6 Exposure
- 6.1.7 Thermal insulation
- 6.1.8 Concrete blocks
- 6.1.9 Bricks
- 6.1.10 Stone masonry
- 6.1.11 Construction of masonry walls
- 6.1.12 Lintels
- 6.1.13 Materials suitable for mortar
- 6.1.14 Mortar
- 6.1.15 Render
- 6.1.16 Cladding
- 6.1.17 DPCs and cavity trays
- 6.1.18 Wall ties
- 6.1.19 Handling materials
- 6.1.20 Cold weather working
- 6.2 External timber framed walls
- 6.2.1 Compliance
- 6.2.2 Provision of information
- 6.2.3 Design and certification
- 6.2.4 Load-bearing walls
- 6.2.5 Fixing the frame
- 6.2.6 Nails and staples
- 6.2.7 Sheathing
- 6.2.8 Differential movement
- 6.2.9 Fire resistance
- 6.2.10 Protection from moisture
- 6.2.11 Timber preservation
- 6.2.12 Vapour control layers
- 6.2.13 Breather membranes
- 6.2.14 Wall ties and fixings
- 6.2.15 Insulation
- 6.3 Internal walls
- 6.3.1 Compliance
- 6.3.2 Provision of information
- 6.3.3 Supporting load-bearing internal walls
- 6.3.4 Masonry walls
- 6.3.5 Load-bearing timber walls
- 6.3.6 Fire resistance
- 6.3.7 Sound insulation
- 6.3.8 Partitions: internal non load-bearing
- 6.3.9 Construction of timber partitions
- 6.3.10 Plasterboard
- 6.3.11 Construction of proprietary systems
- 6.3.12 Damp-proof courses
- 6.3.13 Components
- 6.4 Timber and concrete upper floors
- 6.4.1 Compliance
- 6.4.2 Provision of information
- 6.4.3 Upper floor design
- 6.4.4 Fire spread
- 6.4.5 Sound insulation
- 6.4.6 In-situ concrete floors and concreting
- 6.4.7 Precast concrete
- 6.4.8 Timber joist spans
- 6.4.9 Timber joists
- 6.4.10 Construction of timber floors
- 6.4.11 Joists supported by intermediate walls
- 6.4.12 Joists connected to steel
- 6.4.13 Joists into hangers
- 6.4.14 Timber joist and restraint strap
- 6.4.15 Strutting
- 6.4.16 Joists and openings
- 6.4.17 Multiple joists
- 6.4.18 Notching and drilling
- 6.4.19 Floor decking
- 6.4.20 Floating floors or floors between homes
- 6.5 Steelwork
- 6.6 Staircases
- 6.6.1 Compliance
- 6.6.2 Provision of information
- 6.6.3 Fire precautions
- 6.6.4 Lighting
- 6.6.5 Safe transmission of loads
- 6.6.6 Headroom and width
- 6.6.7 Design of steps
- 6.6.8 Landings
- 6.6.9 Guarding
- 6.6.10 Handrails
- 6.6.11 Timber staircases
- 6.6.12 Timber and wood-based products
- 6.6.13 Finished joinery
- 6.6.14 Concrete staircases
- 6.6.15 Steel staircases
- 6.6.16 Staircase units
- 6.6.17 Fixings
- 6.6.18 Protection
- 6.7 Doors, windows and glazing
- 6.8 Fireplaces, chimneys and flues
- 6.8.1 Compliance
- 6.8.2 Provision of information
- 6.8.3 Solid fuel – fireplaces and hearths
- 6.8.4 Solid fuel – combustion air
- 6.8.5 Solid fuel – flue pipes
- 6.8.6 Solid fuel – Chimneys
- 6.8.7 Solid fuel – outlets and terminals
- 6.8.8 Gas – fireplaces and hearths
- 6.8.9 Gas – combustion air
- 6.8.10 Gas – flue pipes
- 6.8.11 Gas – chimneys
- 6.8.12 Gas – outlets and terminals
- 6.8.13 Oil – fireplaces and hearths
- 6.8.14 Oil – combustion air
- 6.8.15 Oil – flue pipes
- 6.8.16 Oil – chimneys
- 6.8.17 Oil – outlets and terminals
- 6.8.18 All – fireplaces and hearths
- 6.8.19 All – fireplace surrounds
- 6.8.20 All – flue pipes
- 6.8.21 All – flue liners
- 6.8.22 All – flues
- 6.8.23 All – chimneys
- 6.8.24 Masonry
- 6.8.25 Mortar
- 6.8.26 DPC
- 6.8.27 Flashings
- 6.8.28 Terminals
- 6.8.29 Flue testing
- 6.8.30 Further information
- 6.9 Curtain walling and cladding
- 6.9.1 Compliance
- 6.9.2 Provision of information
- 6.9.3 Certification
- 6.9.4 Loads
- 6.9.5 Support and fixings
- 6.9.6 Durability
- 6.9.7 Interfaces
- 6.9.8 Insulation
- 6.9.9 Damp proofing and vapour control
- 6.9.10 Installation and tolerances
- 6.9.11 Electrical continuity and earth bonding
- 6.9.12 Maintenance
- 6.9.13 Glazing, gaskets and sealants
- 6.9.14 Cavity barriers and firestops
- 6.9.15 Ventilation screens
- 6.9.16 Handling and storage
- 6.9.17 Curtain walling
- 6.9.18 Rainscreen cladding
- 6.9.19 Insulated render and brick slip cladding
- 6.10 Light steel framed walls and floors
- 6.10.1 Compliance
- 6.10.2 Provision of information
- 6.10.3 Certification
- 6.10.4 Load-bearing walls and floors
- 6.10.5 Control of fire
- 6.10.6 Acoustic performance
- 6.10.7 Steel and fixings
- 6.10.8 Detailing of steel joist
- 6.10.9 Restraint
- 6.10.10 Fixing floor decking and ceilings
- 6.10.11 Moisture control
- 6.10.12 Insulation
- 6.10.13 Vapour control layers
- 6.10.14 Breather membranes
- 6.10.15 Construction of load-bearing walls and external infill walls
- 6.10.16 Construction of non load-bearing walls
- 6.10.17 Panels, cladding and boards
- 6.10.18 Wall ties
- 6.10.19 Services
- 6.10.20 Further information
- 6.11 Render
- 6.1 External masonry walls
- 7 Roofs
- 7.1 Flat roofs and balconies
- 7.1.1 Compliance
- 7.1.2 Provision of information
- 7.1.3 Flat roof and balcony design
- 7.1.4 Timber and timber decks
- 7.1.5 Profiled metal decks
- 7.1.6 Concrete decks
- 7.1.7 Thermal insulation and vapour control
- 7.1.8 Waterproofing and surface treatments
- 7.1.9 Green and proprietary roofs
- 7.1.10 Detailing of flat roofs
- 7.1.11 Accessible thresholds
- 7.1.12 Drainage
- 7.1.13 Guarding to balconies
- 7.2 Pitched roofs
- 7.2.1 Compliance
- 7.2.2 Provision of information
- 7.2.3 Design of pitched roofs
- 7.2.4 Protection of trusses
- 7.2.5 Durability
- 7.2.6 Wall plates
- 7.2.7 Joints and connections
- 7.2.8 Restraint
- 7.2.9 Bracing for trussed rafter roofs
- 7.2.10 Strutting for attic trusses and cut roofs that form a floor
- 7.2.11 Support for equipment
- 7.2.12 Access
- 7.2.13 Dormer construction
- 7.2.14 Underlay and sarking
- 7.2.15 Ventilation, vapour control and insulation
- 7.2.16 Firestopping and cavity barriers
- 7.2.17 Battens
- 7.2.18 Roof coverings
- 7.2.19 Fixing tiles and slates
- 7.2.20 Weathering details
- 7.2.21 Valleys and hidden gutters
- 7.2.22 Drainage
- 7.2.23 Fascias and trim
- 7.2.24 Spandrel panels
- 7.1 Flat roofs and balconies
- 8 Services
- 8.1 Internal services
- 8.1.1 Compliance
- 8.1.2 Provision of information
- 8.1.3 Water services and supply
- 8.1.4 Cold water storage
- 8.1.5 Hot water service
- 8.1.6 Soil and waste systems
- 8.1.7 Electrical services and installations
- 8.1.8 Gas service installations
- 8.1.9 Meters
- 8.1.10 Space heating systems
- 8.1.11 Installation
- 8.1.12 Extract ducts
- 8.1.13 Testing and commissioning
- 8.2 Low or zero carbon technologies
- 8.2.1 Compliance
- 8.2.2 Provision of information
- 8.2.3 Clean Air Act
- 8.2.4 System design
- 8.2.5 Access
- 8.2.6 Handling, storage and protection
- 8.2.7 Sequence of work
- 8.2.8 Location
- 8.2.9 Building integration
- 8.2.10 Fixing
- 8.2.11 Electrical installation requirements
- 8.2.12 Pipes, insulation and protection from cold
- 8.2.13 Ground collectors
- 8.2.14 Fuel storage
- 8.2.15 Safe discharge
- 8.2.16 Testing and commissioning
- 8.2.17 Handover requirements
- 8.2.18 Further information
- 8.3 Mechanical ventilation with heat recovery
- 8.1 Internal services
- 9 Finishes
- 10 External works
- 10.1 Garages
- 10.2 Drives, paths and landscaping
- 10.2.1 Compliance
- 10.2.2 Provision of information
- 10.2.3 Stability
- 10.2.4 Freestanding walls and retaining structures
- 10.2.5 Guarding and steps
- 10.2.6 Drives, paths and landscaping
- 10.2.7 Materials
- 10.2.8 Garden areas within 3m of the home
- 10.2.9 Garden areas
- 10.2.10 Timber decking
- 10.2.11 Landscaping
6.1.7Thermal insulation
Thermal insulation shall be adequate and installed correctly. Issues to be taken into account include:
- installation
- insulation materials
- construction type.
The insulation value of the wall must meet the requirements of the relevant Building Regulations. Cold bridging should be avoided. Particular care is needed:
- at openings
- between external walls and roofs, internal walls and floors.
- close butted with no gaps
- installed in accordance with the manufacturer’s recommendations.
- mortar joints, including perpends, should be solidly filled with mortar
- mortar droppings should be removed from wall ties and the edges of insulation materials
- excess mortar should be struck smooth from the inside of the outer leaf.
- with a minimum of two ties to each board or batt
- which coincide with horizontal joints in the insulation.
- be stored flat without bearers, otherwise they may distort, making them difficult to fix against the wall
- be rejected where warped.
- installed by a member of a surveillance scheme acceptable to NHBC
- installed by operatives trained by the assessment holder, and approved by the assessment holder and the assessing organisation.
- UF foam to BS 5617 and installed in accordance with BS 5618, or
- assessed in accordance with Technical Requirement R3.
- it should only be fixed against the cavity face of the inner leaf
- a 50mm clear cavity between the partial cavity insulation and the outer leaf should be maintained
- wall ties long enough to allow a 50mm embedment in each masonry leaf should be used.
- the type of insulation, its thickness and the wall construction should be suitable for the exposure of the home (see Table 2)
- render on an external leaf of clay bricks (F2,S1 or F1,S1 designation bricks to BS EN 771) is not permitted in areas of severe or very severe exposure to wind-driven rain
- mortar joints should not be recessed
- painted finishes on bricks or render are not acceptable where they are likely to cause damage (including frost damage or sulfate attack).
- lightweight aerated concrete
- lightweight aggregate blocks
- voided blocks with insulation infill
- blocks faced with insulation material.
- manufacturers’ recommendations should be followed
- a clear 50mm wide cavity should be maintained
- blocks should be capable of supporting concentrated loads
- the correct type of joist hanger for the type and size of both the block and joist should be used
- long unbroken lengths of blockwork should be avoided
- precautions should be taken to reduce risk of shrinkage cracking
- restrictions on chasing for services when using voided blocks should be noted.
Installation
Workmanship should be maintained to minimise the risk of damp penetration to the inside of the home. Gaps provide routes for dampness, and condensation can form on the cold spots where insulation is missing. Insulation should be:
Where cavity insulation is used:
The first row of insulation boards or batts should be supported on wall ties:
Where wall ties need to be closely spaced, e.g. at reveals, it is acceptable to make a neat cut in the insulation to accept the extra ties.
Insulation boards for partial fill should:
All retro-fill insulation materials, including UF foam, blown mineral fibre and expanded polystyrene beads should be:
Insulation materials
Insulation should be:
Construction type
The following are recommendations and guidance according to construction type:
Partial cavity insulation
Where partial cavity insulation is installed:
In areas of very severe exposure in England and Wales, a residual cavity of 75mm is required where the outer leaf is fairfaced masonry.
Full cavity insulation
Where the cavity is to be fully filled with insulation:
Table 2: Suitable wall constructions for use with full-fill cavity insulation
Notes
1 In very severe exposure locations, fairfaced masonry with full cavity insulation is not permitted.
2 Render on an external leaf of clay bricks (F2,S1 or F1,S1 designation bricks to BS EN 771) in severe or very severe exposures is not permitted where the cavity is to be fully filled with insulation.
3 This table covers walls where the external leaf does not exceed 12m in height.
4 The exposure category of the home is determined by its location on the map showing categories of exposure to wind-driven rain.
5 Fairfaced masonry includes clay, calcium silicate and concrete bricks and blocks and dressed natural stone laid in an appropriate mortar preferably with struck, weathered or bucket handle joints. Cavity walls of random rubble or random natural stone should not be fully filled.
6 Recessed mortar joints should not be used.
7 In Scotland, it is not permissible to fill the full width of the cavity with any thermal insulation at the time of construction.
8 In Northern Ireland and the Isle of Man, it is not permissible to fill the cavity with pumped thermal insulants (for example, UF foam) at the time of construction.
The thickness of materials should be as required in the design, and in accordance with Building Regulations.
Guidance for retro-filling cavities:
Northern Ireland and the Isle of Man | Not permitted to fill cavities with pumped thermal insulants at the time of construction. |
Scotland | Not permitted to fill the cavity fully with any thermal insulants at the time of construction. |
England and Wales | In accordance with the guidance in this chapter. |
Inner leaf of insulated blockwork
Types of blockwork include:
For insulated blockwork:
Insulated dry linings