- Home
- 1 Welcome
- 2 Introduction
- 3 General
- 3.1 Concrete and its reinforcement
- 3.1.1 Compliance
- 3.1.2 Provision of information
- 3.1.3 Storage of materials
- 3.1.4 Site-mixed concrete
- 3.1.5 Ready-mixed concrete
- 3.1.6 Concrete specification
- 3.1.7 Admixtures
- 3.1.8 Special types of concrete
- 3.1.9 Design of reinforced concrete
- 3.1.10 Installation of reinforcement
- 3.1.11 Blinding concrete
- 3.1.12 Formwork
- 3.1.13 Before concreting
- 3.1.14 Casting
- 3.1.15 Curing
- 3.1.16 Testing
- 3.1.17 Glossary
- 3.2 Cold weather working
- 3.3 Timber preservation (natural solid timber)
- 3.1 Concrete and its reinforcement
- 4 Foundations
- 4.1 Land quality – managing ground conditions
- 4.1.1 Compliance
- 4.1.2 Initial Assessment – desk study (all sites)
- 4.1.3 Initial Assessment – walkover survey (all sites)
- 4.1.4 Initial Assessment – results
- 4.1.5 Basic Investigation (sites where hazards are not identified or suspected)
- 4.1.6 Detailed Investigation (sites where hazards are identified or suspected)
- 4.1.7 Managing the risks (sites where hazards are found)
- 4.1.8 Unforeseen hazards
- 4.1.9 Documentation and verification
- 4.1.10 Guidance for investigations
- 4.1.11 Further information
- 4.2 Building near trees
- 4.2.1 Compliance
- 4.2.2 Provision of information
- 4.2.3 Building near trees
- 4.2.4 The effects of trees on shrinkable soils
- 4.2.5 Foundations in all soil types
- 4.2.6 Excavation of foundations
- 4.2.7 Foundations in shrinkable soils
- 4.2.8 Design and construction of foundations in shrinkable soils
- 4.2.9 Foundation depths for specific conditions in shrinkable soils
- 4.2.10 Heave precautions
- 4.2.11 New drainage
- 4.2.12 Foundation depth charts
- 4.2.13 Foundation depth tables
- 4.2.14 Example
- 4.2.15 Further information
- 4.3 Strip and trench fill foundations
- 4.3.1 Compliance
- 4.3.2 Provision of information
- 4.3.3 Ground conditions
- 4.3.4 Hazardous ground
- 4.3.5 Setting out
- 4.3.6 Services and drainage
- 4.3.7 Safe transmission of loads
- 4.3.8 Sloping ground and stepped foundations
- 4.3.9 Excavations
- 4.3.10 Reinforcement
- 4.3.11 Concrete
- 4.3.12 Movement joints
- 4.3.13 Construction joints
- 4.4 Raft, pile, pier and beam foundations
- 4.4.1 Compliance
- 4.4.2 Provision of information
- 4.4.3 Site conditions
- 4.4.4 Hazardous ground
- 4.4.5 Services and drainage
- 4.4.6 Safe transmission of loads
- 4.4.7 Construction
- 4.4.8 Engineer checks
- 4.4.9 Compressible materials
- 4.4.10 Reinforcement
- 4.4.11 Concrete
- 4.4.12 Movement joints
- 4.4.13 Resistance to moisture
- 4.5 Vibratory ground improvement techniques
- 4.5.1 Compliance
- 4.5.2 Hazardous sites and ground hazards
- 4.5.3 Desk study and site investigation
- 4.5.4 Confirmation of suitability for treatment
- 4.5.5 Suitability of ground conditions
- 4.5.6 Compatibility of the ground, design and treatment
- 4.5.7 Acceptable methods
- 4.5.8 Materials for use as fill
- 4.5.9 Granular material
- 4.5.10 Sitework
- 4.5.11 Adjacent excavations
- 4.5.12 Verification of completed treatment
- 4.1 Land quality – managing ground conditions
- 5 Substructure, Ground Floors, Drainage and Basements
- 5.1 Substructure and ground-bearing floors
- 5.1.1 Compliance
- 5.1.2 Provision of information
- 5.1.3 Transfer of loads
- 5.1.4 Ground conditions
- 5.1.5 Services and drainage
- 5.1.6 Ground below fill
- 5.1.7 Fill below floors
- 5.1.8 Infill up to 600mm deep
- 5.1.9 Materials used for fill
- 5.1.10 Harmful or toxic materials
- 5.1.11 Regulatory solutions
- 5.1.12 Walls below the DPC
- 5.1.13 Durability
- 5.1.14 Mortar
- 5.1.15 Wall ties
- 5.1.16 Blinding
- 5.1.17 Ground floor slab and concrete
- 5.1.18 Laying the ground-bearing floor slab
- 5.1.19 Damp proof course
- 5.1.20 Damp proofing concrete floors
- 5.1.21 Thermal insulation
- 5.1.22 Installation of insulation
- 5.1.23 Further information
- 5.2 Suspended ground floors
- 5.2.1 Compliance
- 5.2.2 Provision of information
- 5.2.3 Contaminants
- 5.2.4 Proprietary systems
- 5.2.5 Transfer of loads: concrete floors
- 5.2.6 Reinforced concrete
- 5.2.7 Construction of suspended concrete ground floors
- 5.2.8 Transfer of loads: timber floors
- 5.2.9 Thermal insulation and cold bridging
- 5.2.10 Damp-proofing and ventilation
- 5.2.11 Floor finishes
- 5.2.12 Floor decking
- 5.3 Drainage below ground
- 5.3.1 Compliance
- 5.3.2 Provision of information
- 5.3.3 Preliminary work
- 5.3.4 Foul and surface water disposal
- 5.3.5 Drainage system performance
- 5.3.6 Ground water drainage
- 5.3.7 Design to avoid damage and blockages
- 5.3.8 Durability
- 5.3.9 Septic tanks and cesspools
- 5.3.10 Septic tank outputs
- 5.3.11 Surface water soakaways
- 5.3.12 Component requirements
- 5.3.13 Excavation
- 5.3.14 Protection of pipework
- 5.3.15 Laying pipework
- 5.3.16 Protection of work
- 5.3.17 Testing
- 5.4 Waterproofing of basements and other below ground structures
- 5.1 Substructure and ground-bearing floors
- 6 Superstructure (excluding roofs)
- 6.1 External masonry walls
- 6.1.1 Compliance
- 6.1.2 Provision of information
- 6.1.3 Structural design
- 6.1.4 Fire resistance
- 6.1.5 Acoustic resistance
- 6.1.6 Exposure
- 6.1.7 Thermal insulation
- 6.1.8 Concrete blocks
- 6.1.9 Bricks
- 6.1.10 Stone masonry
- 6.1.11 Construction of masonry walls
- 6.1.12 Lintels
- 6.1.13 Materials suitable for mortar
- 6.1.14 Mortar
- 6.1.15 Render
- 6.1.16 Cladding
- 6.1.17 DPCs and cavity trays
- 6.1.18 Wall ties and bed joint reinforcements
- 6.1.19 Handling materials
- 6.1.20 Protection of the works during construction
- 6.2 External timber framed walls
- 6.2.1 Compliance
- 6.2.2 Provision of information
- 6.2.3 Design checking and certification
- 6.2.4 Load-bearing walls
- 6.2.5 Fixing the frame
- 6.2.6 Nails and staples
- 6.2.7 Sheathing
- 6.2.8 Differential movement
- 6.2.9 Fire resistance
- 6.2.10 Protection from moisture
- 6.2.11 Timber preservation
- 6.2.12 Vapour control layers
- 6.2.13 Breather membranes
- 6.2.14 Wall ties and fixings
- 6.2.15 Insulation
- 6.3 Internal walls
- 6.3.1 Compliance
- 6.3.2 Provision of information
- 6.3.3 Supporting load-bearing internal walls
- 6.3.4 Masonry walls
- 6.3.5 Load-bearing timber walls
- 6.3.6 Fire resistance
- 6.3.7 Sound insulation
- 6.3.8 Partitions: internal non load-bearing
- 6.3.9 Construction of timber partitions
- 6.3.10 Construction of steel framed partitions
- 6.3.11 Construction of proprietary systems
- 6.3.12 Plasterboard
- 6.3.13 Damp-proof courses
- 6.3.14 Components
- 6.4 Timber and concrete upper floors
- 6.4.1 Compliance
- 6.4.2 Provision of information
- 6.4.3 Upper floor design
- 6.4.4 Fire spread
- 6.4.5 Sound insulation
- 6.4.6 In-situ concrete floors and concreting
- 6.4.7 Precast concrete
- 6.4.8 Timber joist spans
- 6.4.9 Timber joists
- 6.4.10 Construction of timber floors
- 6.4.11 Joists supported by intermediate walls
- 6.4.12 Joists connected to steel
- 6.4.13 Joists into hangers
- 6.4.14 Timber joist and restraint strap
- 6.4.15 Strutting
- 6.4.16 Joists and openings
- 6.4.17 Multiple joists
- 6.4.18 Notching and drilling
- 6.4.19 Floor decking
- 6.4.20 Floating floors or floors between homes
- 6.5 Steelwork
- 6.6 Staircases
- 6.6.1 Compliance
- 6.6.2 Provision of information
- 6.6.3 Fire precautions
- 6.6.4 Lighting
- 6.6.5 Glazing
- 6.6.6 Structural design
- 6.6.7 Headroom and width
- 6.6.8 Design of steps
- 6.6.9 Landings
- 6.6.10 Guarding
- 6.6.11 Handrails
- 6.6.12 Staircases made from timber and wood-based products
- 6.6.13 Concrete staircases
- 6.6.14 Steel staircases
- 6.6.15 Proprietary staircase units
- 6.6.16 Protection
- 6.7 Doors, windows and glazing
- 6.8 Fireplaces, chimneys and flues
- 6.8.1 Compliance
- 6.8.2 Provision of information
- 6.8.3 Solid fuel – fireplaces and hearths
- 6.8.4 Solid fuel – combustion air
- 6.8.5 Solid fuel – flue pipes
- 6.8.6 Solid fuel – chimneys
- 6.8.7 Solid fuel – outlets and terminals
- 6.8.8 Gas – fireplaces and hearths
- 6.8.9 Gas – combustion air
- 6.8.10 Gas – flue pipes
- 6.8.11 Gas – chimneys
- 6.8.12 Gas – outlets and terminals
- 6.8.13 Oil – fireplaces and hearths
- 6.8.14 Oil – combustion air
- 6.8.15 Oil – flue pipes
- 6.8.16 Oil – chimneys
- 6.8.17 Oil – outlets and terminals
- 6.8.18 All – fireplaces and hearths
- 6.8.19 All – fireplace surrounds
- 6.8.20 All – flue pipes
- 6.8.21 All – flue liners
- 6.8.22 All – flues
- 6.8.23 All – chimneys
- 6.8.24 Masonry
- 6.8.25 Mortar
- 6.8.26 DPC
- 6.8.27 Flashings
- 6.8.28 Terminals
- 6.8.29 Flue testing
- 6.8.30 Further information
- 6.9 Curtain walling and cladding
- 6.9.1 Compliance
- 6.9.2 Provision of information
- 6.9.3 Certification
- 6.9.4 Loads
- 6.9.5 Support and fixings
- 6.9.6 Durability
- 6.9.7 Interfaces
- 6.9.8 Insulation
- 6.9.9 Damp proofing and vapour control
- 6.9.10 Installation and tolerances
- 6.9.11 Electrical continuity and earth bonding
- 6.9.12 Maintenance
- 6.9.13 Glazing, gaskets and sealants
- 6.9.14 Cavity barriers and firestops
- 6.9.15 Ventilation screens
- 6.9.16 Handling and storage
- 6.9.17 Curtain walling
- 6.9.18 Rainscreen cladding
- 6.9.19 Insulated render and brick slip cladding
- 6.10 Light steel framed walls and floors
- 6.10.1 Compliance
- 6.10.2 Provision of information
- 6.10.3 Structural certification
- 6.10.4 Structural design of load-bearing floors and walls
- 6.10.5 Structural design of infill walls
- 6.10.6 Roofs
- 6.10.7 Steel and fixings
- 6.10.8 Detailing of steel joists
- 6.10.9 Restraint
- 6.10.10 Construction of load-bearing walls and external infill walls
- 6.10.11 Interfaces with staircases
- 6.10.12 Fixing floor decking and ceilings
- 6.10.13 Other design issues
- 6.10.14 Behaviour in relation to fire
- 6.10.15 Acoustic performance
- 6.10.16 Moisture control
- 6.10.17 Insulation
- 6.10.18 Vapour control layers
- 6.10.19 Breather membranes
- 6.10.20 Cladding, lining and sheathing boards
- 6.10.21 Wall ties
- 6.10.22 Services
- 6.10.23 Further information
- 6.11 Render
- 6.1 External masonry walls
- 7 Roofs
- 7.1 Flat roofs, terraces and balconies
- 7.1.1 Compliance
- 7.1.2 Provision of information
- 7.1.3 Flat roof, terrace and balcony general design
- 7.1.4 Drainage
- 7.1.5 Flat roof, terrace and balcony structural design
- 7.1.6 Timber structure and deck
- 7.1.7 Concrete decks
- 7.1.8 Profiled self-supporting metal decks
- 7.1.9 Profiled self-supporting metal roofing
- 7.1.10 Thermal insulation and vapour control
- 7.1.11 Waterproofing layer and surface treatments
- 7.1.12 Green and biodiverse (brown roofs) – including roof gardens
- 7.1.13 Blue roofs
- 7.1.14 Raised Podium
- 7.1.15 Detailing of flat roofs
- 7.1.16 Accessible thresholds and upstands
- 7.1.17 Parapets and guarding to terraces and balconies
- 7.2 Pitched roofs
- 7.2.1 Compliance
- 7.2.2 Provision of information
- 7.2.3 Design of pitched roofs
- 7.2.4 Protection of trusses
- 7.2.5 Durability
- 7.2.6 Wall plates
- 7.2.7 Joints and connections
- 7.2.8 Restraint
- 7.2.9 Bracing for trussed rafter roofs
- 7.2.10 Strutting for attic trusses and cut roofs that form a floor
- 7.2.11 Support for equipment
- 7.2.12 Access
- 7.2.13 Dormer construction
- 7.2.14 Underlay and sarking
- 7.2.15 Ventilation, vapour control and insulation
- 7.2.16 Firestopping and cavity barriers
- 7.2.17 Battens
- 7.2.18 Roof coverings
- 7.2.19 Fixing tiles and slates
- 7.2.20 Weathering details
- 7.2.21 Valleys and hidden gutters
- 7.2.22 Drainage
- 7.2.23 Fascias and trim
- 7.2.24 Spandrel panels in cold roofs
- 7.1 Flat roofs, terraces and balconies
- 8 Services
- 8.1 Internal services
- 8.1.1 Compliance
- 8.1.2 Provision of information
- 8.1.3 Water services and supply
- 8.1.4 Cold water storage
- 8.1.5 Hot water service
- 8.1.6 Soil and waste systems
- 8.1.7 Electrical services and installations
- 8.1.8 Gas service installations
- 8.1.9 Meters
- 8.1.10 Space heating systems
- 8.1.11 Installation
- 8.1.12 Extract ducts
- 8.1.13 Testing and commissioning
- 8.2 Low or zero carbon technologies
- 8.2.1 Compliance
- 8.2.2 Provision of information
- 8.2.3 Clean Air Act
- 8.2.4 System design
- 8.2.5 Access
- 8.2.6 Handling, storage and protection
- 8.2.7 Sequence of work
- 8.2.8 Location
- 8.2.9 Building integration
- 8.2.10 Fixing
- 8.2.11 Electrical installation requirements
- 8.2.12 Pipes, insulation and protection from cold
- 8.2.13 Ground collectors
- 8.2.14 Fuel storage
- 8.2.15 Safe discharge
- 8.2.16 Testing and commissioning
- 8.2.17 Handover requirements
- 8.2.18 Further information
- 8.3 Mechanical ventilation with heat recovery
- 8.1 Internal services
- 9 Finishes
- 9.1 A consistent approach to finishes
- 9.1.1 Compliance
- 9.1.2 External walls
- 9.1.3 Internal walls and ceilings
- 9.1.4 Doors and windows
- 9.1.5 Floors
- 9.1.6 Glazing
- 9.1.7 Ceramic, concrete, terrazzo and similar tile finishes
- 9.1.8 Fitted furniture
- 9.1.9 Joint sealants
- 9.1.10 Paint finishes
- 9.1.11 Sanitary ware
- 9.1.12 Other surfaces and components
- 9.1.13 Pitched roof coverings
- 9.1.14 Garages
- 9.1.15 External works
- 9.2 Wall and ceiling finishes
- 9.3 Floor finishes
- 9.4 Finishes and fitments
- 9.5 Painting and decorating
- 9.1 A consistent approach to finishes
- 10 External works
- 10.1 Garages
- 10.2 Drives, paths and landscaping
- 10.2.1 Compliance
- 10.2.2 Provision of information
- 10.2.3 Stability
- 10.2.4 Freestanding walls and retaining structures
- 10.2.5 Guarding and steps
- 10.2.6 Drives, paths and landscaping
- 10.2.7 Materials
- 10.2.8 Garden areas within 3m of the home
- 10.2.9 Garden areas
- 10.2.10 Timber decking
- 10.2.11 Landscaping
6.7.7Glazing
Glass and the method of glazing shall be installed in accordance with the design and to ensure adequate in-service performance. Issues to be taken into account include:
- standards
- glazing compounds
- glazing systems
- insulating glass units
- condition before installation
- sizing
- rebates
- bead glazing.
Standards
Where there is a high risk of accidental breakage, glazing should be designed and selected to comply with relevant building regulations.
Where there is a particular risk (such as door side panels or ‘low level’ glazing) and where fully glazed panels can be mistaken for doors, toughened or laminated glass, or other materials such as acrylic or polycarbonate, may be required.
The glass supplier should provide documentation to confirm:
- the properties of the glass used
- compliance with the appropriate British Standards.
- compatible with the levels of safety and security that are required
- identified as safety glass with a permanent marking (includes glazed shower/bath screens).
- be specified to suit the design wind loads for the location
- comply with BS 6262 and relevant data sheets issued by the Glass and Glazing Federation.
- be compatible with the frame finishes
- be in accordance with the manufacturer’s recommendations.
- a minimum 5mm gap between the frame’s lower rebate and the edge seal of the insulating glass unit
- adequate drainage and ventilation through holes, slots or channels
- the edge seal of the insulating glass unit adequately protected.
- comply with the relevant parts of BS 8000, BS 6262 and BRE Digest 453
- not have gaps around the perimeter of the insulating glass unit.
- distance pieces, unless load-bearing tapes are used
- setting blocks
- location blocks, where required
- appropriate beads
- suitable glazing compounds, sealants, gaskets and/or capping.
- project slightly over the rebate edge
- be fixed to the rebate platform.
- carry a CE mark to BS EN 1279 and have third-party certification, e.g. BSI Kitemark
- be checked to ensure they comply with the design, including glass type, gas filling, edge seal type and dimensions
- have a dual seal or a single seal of hot melt butyl and desiccant in at least one long and one short section of the spacer bar.
- water accumulating between sheets, which may cause internal surfaces to become marked
- edge damage or scratching.
- 3mm gap between the glass edge and the frame
- 5mm gap at the bottom bead for drained systems.
- the correct size for the glazing
- primed where timber
- rigid and true.
- protected from sunlight at the edges by the frame
- positioned to ensure the spacer bar is below the level of the frame’s sightline.
- dimensions of holes and slots should be checked to ensure that effective drainage can occur
- drainage channels in the rebate should be free from obstructions that could prevent effective drainage.
Glazed materials and units should be:
Glazing should ensure adequate in-service performance. The quality and thickness of normal window glass should:
Glazing and materials should comply with appropriate British Standards, including:
BS 5516 | 'Patent glazing and sloping glazing for buildings’. |
BS 6262 | ‘Code of practice for glazing of buildings’. |
BS EN 1279 | ‘Glass in buildings-insulating glass units’. |
BS EN 572 | ‘Float glass’. |
BS EN 14449 | ‘Laminated glass’. |
BS EN 12150 | ‘Toughened glass’. |
BS EN 572 | ‘Wired glass’. |
BS EN 1096 | ‘Low-e coated glasses, including hard and soft coated’. |
Glazing compounds
Glazing compounds should:
Linseed oil based putty should not be used in the installation of laminated glass or insulating glass units.
Glazing systems
Drained and vented systems
Drained and vented systems should be used for site fixed insulating glass units and where units greater than 1m2 are used, to allow moisture that enters the glazing channel between the frame and the edge seal of the insulating glass unit to drain away and prevent long-term moisture contact with the edge seal. Drained and vented systems should have:
Fully bedded systems
Fully bedded systems are acceptable for factory glazing only where the insulated unit is less than 1m2, and should:
Partially bedded insulating glass units may be fixed on site where bedded at the top and sides, providing the rebate platform is drained and vented.
Site glazed systems
Where doors and windows of materials other than timber are delivered to the site unglazed, all glazing should be carried out in accordance with the manufacturer’s instructions.
Appropriate fixing and sealing systems should include:
Beads
In external situations, the bottom bead should:
Insulating glass units
Insulating glass units should:
Condition before installation
Glass and insulating glass units should be inspected for both visual defects and those which could lead to premature failure. Defects can be caused by:
Insulating glass units should be adequately protected when stored prior to installation.
Sizing
To account for thermal expansion, the following gaps should be provided:
Insulating glass units should not be cut or punctured on site.
Rebates
Rebates for glass should be:
Insulating glass units should be:
Setting and location blocks should be of a suitable and resilient material.