- Home
- 1 Welcome
- 2 Introduction
- 3 General
- 3.1 Concrete and its reinforcement
- 3.1.1 Compliance
- 3.1.2 Provision of information
- 3.1.3 Storage of materials
- 3.1.4 Site-mixed concrete
- 3.1.5 Ready-mixed concrete
- 3.1.6 Concrete specification
- 3.1.7 Admixtures
- 3.1.8 Special types of concrete
- 3.1.9 Design of reinforced concrete
- 3.1.10 Installation of reinforcement
- 3.1.11 Blinding concrete
- 3.1.12 Formwork
- 3.1.13 Before concreting
- 3.1.14 Casting
- 3.1.15 Curing
- 3.1.16 Testing
- 3.1.17 Glossary
- 3.2 Cold weather working
- 3.3 Timber preservation (natural solid timber)
- 3.1 Concrete and its reinforcement
- 4 Foundations
- 4.1 Land quality – managing ground conditions
- 4.1.1 Compliance
- 4.1.2 Initial Assessment – desk study (all sites)
- 4.1.3 Initial Assessment – walkover survey (all sites)
- 4.1.4 Initial Assessment – results
- 4.1.5 Basic Investigation (sites where hazards are not identified or suspected)
- 4.1.6 Detailed Investigation (sites where hazards are identified or suspected)
- 4.1.7 Managing the risks (sites where hazards are found)
- 4.1.8 Unforeseen hazards
- 4.1.9 Documentation and verification
- 4.1.10 Guidance for investigations
- 4.1.11 Further information
- 4.2 Building near trees
- 4.2.1 Compliance
- 4.2.2 Provision of information
- 4.2.3 Building near trees
- 4.2.4 The effects of trees on shrinkable soils
- 4.2.5 Foundations in all soil types
- 4.2.6 Excavation of foundations
- 4.2.7 Foundations in shrinkable soils
- 4.2.8 Design and construction of foundations in shrinkable soils
- 4.2.9 Foundation depths for specific conditions in shrinkable soils
- 4.2.10 Heave precautions
- 4.2.11 New drainage
- 4.2.12 Foundation depth charts
- 4.2.13 Foundation depth tables
- 4.2.14 Example
- 4.2.15 Further information
- 4.3 Strip and trench fill foundations
- 4.3.1 Compliance
- 4.3.2 Provision of information
- 4.3.3 Ground conditions
- 4.3.4 Hazardous ground
- 4.3.5 Setting out
- 4.3.6 Services and drainage
- 4.3.7 Safe transmission of loads
- 4.3.8 Sloping ground and stepped foundations
- 4.3.9 Excavations
- 4.3.10 Reinforcement
- 4.3.11 Concrete
- 4.3.12 Movement joints
- 4.3.13 Construction joints
- 4.4 Raft, pile, pier and beam foundations
- 4.4.1 Compliance
- 4.4.2 Provision of information
- 4.4.3 Site conditions
- 4.4.4 Hazardous ground
- 4.4.5 Services and drainage
- 4.4.6 Safe transmission of loads
- 4.4.7 Construction
- 4.4.8 Engineer checks
- 4.4.9 Compressible materials
- 4.4.10 Reinforcement
- 4.4.11 Concrete
- 4.4.12 Movement joints
- 4.4.13 Resistance to moisture
- 4.5 Vibratory ground improvement techniques
- 4.5.1 Compliance
- 4.5.2 Hazardous sites and ground hazards
- 4.5.3 Desk study and site investigation
- 4.5.4 Confirmation of suitability for treatment
- 4.5.5 Suitability of ground conditions
- 4.5.6 Compatibility of the ground, design and treatment
- 4.5.7 Acceptable methods
- 4.5.8 Materials for use as fill
- 4.5.9 Granular material
- 4.5.10 Sitework
- 4.5.11 Adjacent excavations
- 4.5.12 Verification of completed treatment
- 4.1 Land quality – managing ground conditions
- 5 Substructure, Ground Floors, Drainage and Basements
- 5.1 Substructure and ground-bearing floors
- 5.1.1 Compliance
- 5.1.2 Provision of information
- 5.1.3 Transfer of loads
- 5.1.4 Ground conditions
- 5.1.5 Services and drainage
- 5.1.6 Ground below fill
- 5.1.7 Fill below floors
- 5.1.8 Infill up to 600mm deep
- 5.1.9 Materials used for fill
- 5.1.10 Harmful or toxic materials
- 5.1.11 Regulatory solutions
- 5.1.12 Walls below the DPC
- 5.1.13 Durability
- 5.1.14 Mortar
- 5.1.15 Wall ties
- 5.1.16 Blinding
- 5.1.17 Ground floor slab and concrete
- 5.1.18 Laying the ground-bearing floor slab
- 5.1.19 Damp proof course
- 5.1.20 Damp proofing concrete floors
- 5.1.21 Thermal insulation
- 5.1.22 Installation of insulation
- 5.1.23 Further information
- 5.2 Suspended ground floors
- 5.2.1 Compliance
- 5.2.2 Provision of information
- 5.2.3 Contaminants
- 5.2.4 Proprietary systems
- 5.2.5 Transfer of loads: concrete floors
- 5.2.6 Reinforced concrete
- 5.2.7 Construction of suspended concrete ground floors
- 5.2.8 Transfer of loads: timber floors
- 5.2.9 Thermal insulation and cold bridging
- 5.2.10 Damp-proofing and ventilation
- 5.2.11 Floor finishes
- 5.2.12 Floor decking
- 5.3 Drainage below ground
- 5.3.1 Compliance
- 5.3.2 Provision of information
- 5.3.3 Preliminary work
- 5.3.4 Foul and surface water disposal
- 5.3.5 Drainage system performance
- 5.3.6 Ground water drainage
- 5.3.7 Design to avoid damage and blockages
- 5.3.8 Durability
- 5.3.9 Septic tanks and cesspools
- 5.3.10 Septic tank outputs
- 5.3.11 Surface water soakaways
- 5.3.12 Component requirements
- 5.3.13 Excavation
- 5.3.14 Protection of pipework
- 5.3.15 Laying pipework
- 5.3.16 Protection of work
- 5.3.17 Testing
- 5.4 Waterproofing of basements and other below ground structures
- 5.1 Substructure and ground-bearing floors
- 6 Superstructure (excluding roofs)
- 6.1 External masonry walls
- 6.1.1 Compliance
- 6.1.2 Provision of information
- 6.1.3 Structural design
- 6.1.4 Fire resistance
- 6.1.5 Acoustic resistance
- 6.1.6 Exposure
- 6.1.7 Thermal insulation
- 6.1.8 Concrete blocks
- 6.1.9 Bricks
- 6.1.10 Stone masonry
- 6.1.11 Construction of masonry walls
- 6.1.12 Lintels
- 6.1.13 Materials suitable for mortar
- 6.1.14 Mortar
- 6.1.15 Render
- 6.1.16 Cladding
- 6.1.17 DPCs and cavity trays
- 6.1.18 Wall ties and bed joint reinforcements
- 6.1.19 Handling materials
- 6.1.20 Protection of the works during construction
- 6.2 External timber framed walls
- 6.2.1 Compliance
- 6.2.2 Provision of information
- 6.2.3 Design checking and certification
- 6.2.4 Load-bearing walls
- 6.2.5 Fixing the frame
- 6.2.6 Nails and staples
- 6.2.7 Sheathing
- 6.2.8 Differential movement
- 6.2.9 Fire resistance
- 6.2.10 Protection from moisture
- 6.2.11 Timber preservation
- 6.2.12 Vapour control layers
- 6.2.13 Breather membranes
- 6.2.14 Wall ties and fixings
- 6.2.15 Insulation
- 6.3 Internal walls
- 6.3.1 Compliance
- 6.3.2 Provision of information
- 6.3.3 Supporting load-bearing internal walls
- 6.3.4 Masonry walls
- 6.3.5 Load-bearing timber walls
- 6.3.6 Fire resistance
- 6.3.7 Sound insulation
- 6.3.8 Partitions: internal non load-bearing
- 6.3.9 Construction of timber partitions
- 6.3.10 Construction of steel framed partitions
- 6.3.11 Construction of proprietary systems
- 6.3.12 Plasterboard
- 6.3.13 Damp-proof courses
- 6.3.14 Components
- 6.4 Timber and concrete upper floors
- 6.4.1 Compliance
- 6.4.2 Provision of information
- 6.4.3 Upper floor design
- 6.4.4 Fire spread
- 6.4.5 Sound insulation
- 6.4.6 In-situ concrete floors and concreting
- 6.4.7 Precast concrete
- 6.4.8 Timber joist spans
- 6.4.9 Timber joists
- 6.4.10 Construction of timber floors
- 6.4.11 Joists supported by intermediate walls
- 6.4.12 Joists connected to steel
- 6.4.13 Joists into hangers
- 6.4.14 Timber joist and restraint strap
- 6.4.15 Strutting
- 6.4.16 Joists and openings
- 6.4.17 Multiple joists
- 6.4.18 Notching and drilling
- 6.4.19 Floor decking
- 6.4.20 Floating floors or floors between homes
- 6.5 Steelwork
- 6.6 Staircases
- 6.6.1 Compliance
- 6.6.2 Provision of information
- 6.6.3 Fire precautions
- 6.6.4 Lighting
- 6.6.5 Glazing
- 6.6.6 Structural design
- 6.6.7 Headroom and width
- 6.6.8 Design of steps
- 6.6.9 Landings
- 6.6.10 Guarding
- 6.6.11 Handrails
- 6.6.12 Staircases made from timber and wood-based products
- 6.6.13 Concrete staircases
- 6.6.14 Steel staircases
- 6.6.15 Proprietary staircase units
- 6.6.16 Protection
- 6.7 Doors, windows and glazing
- 6.8 Fireplaces, chimneys and flues
- 6.8.1 Compliance
- 6.8.2 Provision of information
- 6.8.3 Solid fuel – fireplaces and hearths
- 6.8.4 Solid fuel – combustion air
- 6.8.5 Solid fuel – flue pipes
- 6.8.6 Solid fuel – chimneys
- 6.8.7 Solid fuel – outlets and terminals
- 6.8.8 Gas – fireplaces and hearths
- 6.8.9 Gas – combustion air
- 6.8.10 Gas – flue pipes
- 6.8.11 Gas – chimneys
- 6.8.12 Gas – outlets and terminals
- 6.8.13 Oil – fireplaces and hearths
- 6.8.14 Oil – combustion air
- 6.8.15 Oil – flue pipes
- 6.8.16 Oil – chimneys
- 6.8.17 Oil – outlets and terminals
- 6.8.18 All – fireplaces and hearths
- 6.8.19 All – fireplace surrounds
- 6.8.20 All – flue pipes
- 6.8.21 All – flue liners
- 6.8.22 All – flues
- 6.8.23 All – chimneys
- 6.8.24 Masonry
- 6.8.25 Mortar
- 6.8.26 DPC
- 6.8.27 Flashings
- 6.8.28 Terminals
- 6.8.29 Flue testing
- 6.8.30 Further information
- 6.9 Curtain walling and cladding
- 6.9.1 Compliance
- 6.9.2 Provision of information
- 6.9.3 Certification
- 6.9.4 Loads
- 6.9.5 Support and fixings
- 6.9.6 Durability
- 6.9.7 Interfaces
- 6.9.8 Insulation
- 6.9.9 Damp proofing and vapour control
- 6.9.10 Installation and tolerances
- 6.9.11 Electrical continuity and earth bonding
- 6.9.12 Maintenance
- 6.9.13 Glazing, gaskets and sealants
- 6.9.14 Cavity barriers and firestops
- 6.9.15 Ventilation screens
- 6.9.16 Handling and storage
- 6.9.17 Curtain walling
- 6.9.18 Rainscreen cladding
- 6.9.19 Insulated render and brick slip cladding
- 6.10 Light steel framed walls and floors
- 6.10.1 Compliance
- 6.10.2 Provision of information
- 6.10.3 Structural certification
- 6.10.4 Structural design of load-bearing floors and walls
- 6.10.5 Structural design of infill walls
- 6.10.6 Roofs
- 6.10.7 Steel and fixings
- 6.10.8 Detailing of steel joists
- 6.10.9 Restraint
- 6.10.10 Construction of load-bearing walls and external infill walls
- 6.10.11 Interfaces with staircases
- 6.10.12 Fixing floor decking and ceilings
- 6.10.13 Other design issues
- 6.10.14 Behaviour in relation to fire
- 6.10.15 Acoustic performance
- 6.10.16 Moisture control
- 6.10.17 Insulation
- 6.10.18 Vapour control layers
- 6.10.19 Breather membranes
- 6.10.20 Cladding, lining and sheathing boards
- 6.10.21 Wall ties
- 6.10.22 Services
- 6.10.23 Further information
- 6.11 Render
- 6.1 External masonry walls
- 7 Roofs
- 7.1 Flat roofs, terraces and balconies
- 7.1.1 Compliance
- 7.1.2 Provision of information
- 7.1.3 Flat roof, terrace and balcony general design
- 7.1.4 Drainage
- 7.1.5 Flat roof, terrace and balcony structural design
- 7.1.6 Timber structure and deck
- 7.1.7 Concrete decks
- 7.1.8 Profiled self-supporting metal decks
- 7.1.9 Profiled self-supporting metal roofing
- 7.1.10 Thermal insulation and vapour control
- 7.1.11 Waterproofing layer and surface treatments
- 7.1.12 Green and biodiverse (brown roofs) – including roof gardens
- 7.1.13 Blue roofs
- 7.1.14 Raised Podium
- 7.1.15 Detailing of flat roofs
- 7.1.16 Accessible thresholds and upstands
- 7.1.17 Parapets and guarding to terraces and balconies
- 7.2 Pitched roofs
- 7.2.1 Compliance
- 7.2.2 Provision of information
- 7.2.3 Design of pitched roofs
- 7.2.4 Protection of trusses
- 7.2.5 Durability
- 7.2.6 Wall plates
- 7.2.7 Joints and connections
- 7.2.8 Restraint
- 7.2.9 Bracing for trussed rafter roofs
- 7.2.10 Strutting for attic trusses and cut roofs that form a floor
- 7.2.11 Support for equipment
- 7.2.12 Access
- 7.2.13 Dormer construction
- 7.2.14 Underlay and sarking
- 7.2.15 Ventilation, vapour control and insulation
- 7.2.16 Firestopping and cavity barriers
- 7.2.17 Battens
- 7.2.18 Roof coverings
- 7.2.19 Fixing tiles and slates
- 7.2.20 Weathering details
- 7.2.21 Valleys and hidden gutters
- 7.2.22 Drainage
- 7.2.23 Fascias and trim
- 7.2.24 Spandrel panels in cold roofs
- 7.1 Flat roofs, terraces and balconies
- 8 Services
- 8.1 Internal services
- 8.1.1 Compliance
- 8.1.2 Provision of information
- 8.1.3 Water services and supply
- 8.1.4 Cold water storage
- 8.1.5 Hot water service
- 8.1.6 Soil and waste systems
- 8.1.7 Electrical services and installations
- 8.1.8 Gas service installations
- 8.1.9 Meters
- 8.1.10 Space heating systems
- 8.1.11 Installation
- 8.1.12 Extract ducts
- 8.1.13 Testing and commissioning
- 8.2 Low or zero carbon technologies
- 8.2.1 Compliance
- 8.2.2 Provision of information
- 8.2.3 Clean Air Act
- 8.2.4 System design
- 8.2.5 Access
- 8.2.6 Handling, storage and protection
- 8.2.7 Sequence of work
- 8.2.8 Location
- 8.2.9 Building integration
- 8.2.10 Fixing
- 8.2.11 Electrical installation requirements
- 8.2.12 Pipes, insulation and protection from cold
- 8.2.13 Ground collectors
- 8.2.14 Fuel storage
- 8.2.15 Safe discharge
- 8.2.16 Testing and commissioning
- 8.2.17 Handover requirements
- 8.2.18 Further information
- 8.3 Mechanical ventilation with heat recovery
- 8.1 Internal services
- 9 Finishes
- 9.1 A consistent approach to finishes
- 9.1.1 Compliance
- 9.1.2 External walls
- 9.1.3 Internal walls and ceilings
- 9.1.4 Doors and windows
- 9.1.5 Floors
- 9.1.6 Glazing
- 9.1.7 Ceramic, concrete, terrazzo and similar tile finishes
- 9.1.8 Fitted furniture
- 9.1.9 Joint sealants
- 9.1.10 Paint finishes
- 9.1.11 Sanitary ware
- 9.1.12 Other surfaces and components
- 9.1.13 Pitched roof coverings
- 9.1.14 Garages
- 9.1.15 External works
- 9.2 Wall and ceiling finishes
- 9.3 Floor finishes
- 9.4 Finishes and fitments
- 9.5 Painting and decorating
- 9.1 A consistent approach to finishes
- 10 External works
- 10.1 Garages
- 10.2 Drives, paths and landscaping
- 10.2.1 Compliance
- 10.2.2 Provision of information
- 10.2.3 Stability
- 10.2.4 Freestanding walls and retaining structures
- 10.2.5 Guarding and steps
- 10.2.6 Drives, paths and landscaping
- 10.2.7 Materials
- 10.2.8 Garden areas within 3m of the home
- 10.2.9 Garden areas
- 10.2.10 Timber decking
- 10.2.11 Landscaping
6.11.6Mixes
The render mix shall be appropriate for the intended purpose, be compatible with the background and be designed to minimise the risk of de-bonding, cracking and crazing. Issues to be taken into account include:
- sand
- mix design
- admixtures and bonding agents
- coat thickness of site-made render
- application of site-made render
- factory-made renders
- lime.
Render coats should not be stronger than the background or any previous coat to which they are applied. Weaker coats can be achieved by reducing the cement content of each coat or by using the same mix but decreasing the coat thickness.
Potable water should be used for mixing render.
Sand
Sand for render should be well-graded category 2, in accordance with BS EN 13139. Sand with excessive fine material, clay or silt can shrink and crack so should be avoided.
A sharp gritty or coarse sand is required for strength in the backing coats, but finer sand should be used for the finishing coat.
Typical sand grades should be:
- 5mm down to 0.075mm – undercoat(s)
- 1.18mm down to 0.075mm – final coat.
- in accordance with BS EN 13914 ‘Design, preparation and application of external rendering and internal plastering’
- appropriate to the strength of the background
- checked against the specification
- of adequate strength and thickness to achieve durability.
- Portland cement with a waterproofing agent already incorporated may be used in the undercoat, or
- a waterproofing agent should be added to the render mix in accordance with the manufacturer’s recommendations.
- be assessed in accordance with Technical Requirement R3
- be used in accordance with the manufacturer’s recommendations
- be compatible with the render
- not be used with factory-made renders without the prior approval of the render manufacturer.
- the number and thickness of coats
- the strength of the coat (subsequent coats should be weaker than the background or the previous coat).
- 16mm for sheltered and moderate exposure zones, or
- 20mm for severe and very severe exposure zones.
- the same thickness but a slightly weaker mix than the first undercoat, or
- a slightly thinner coat of the same strength mix.
- properly graded sand should be used with limits on fine sand proportions
- overworking (polishing) of the render should be avoided, as this causes laitance to be drawn to the surface.
Mix design
Designation ii, iii and iv (strength class M6, M4 and M2) mixes are generally used for rendering.
Stronger mixes are generally more moisture resistant; however, they are also more prone to shrinkage, which increases the likelihood of the render cracking. Weaker mixes may be appropriate for weaker backgrounds in less exposed zones.
For exposure zone classification, see Clause 6.1.6.
Table 4: Designation mix proportions for cement-based mixes
Notes
1 With fine or poorly graded sands, the lower volume of sand should be used.
2 Where soluble salts could be present in the background, mixes should have sulfate-resisting properties.
3 Where pigments are specified, batching should be undertaken with care to ensure colour consistency pigments to BS EN 12878 can be used but should not exceed 10% of the cement weight, or 3% where carbon black is used (white Portland cement may be used).
Render mixes should be:
Where enhanced water-resisting properties are required:
Rendering mortar should not be left turning over in the mixer for longer than necessary.
Admixtures and bonding agents
Admixtures and bonding agents should:
The effect on the adhesion of subsequent render coats should be considered when water-repelling agents are used.
Plasticisers and air entrainers should comply with BS EN 934 and not be used in mortars containing masonry cement.
Coat thickness of site-made render
The number of coats should be designed to take account of the background and exposure conditions of the site.
The mix and its application should be suitable for the specific background. Items to consider include:
Render should have a nominal total finished thickness of not less than:
Table 5: Site-made render designation and typical thickness
Notes
1 Designation iii (M4) should be used for the final coat in severe or very severe exposure zones.
2 For block classifications, see Table 2.
3 Specialist advice should be sought for low density aircrete backgrounds.
Where a three-coat render is used, this should include a second undercoat that is:
Application of site-made render
When applying render, previous coats should be allowed to cure before applying the next coat (typically three to four days).
To avoid surface crazing:
Surfaces should be appropriately prepared to receive following coats. This can be achieved by either combing or scratching. The final coat should be applied to an undercoat that is suitably keyed.
The size of the background to be rendered should be assessed to determine if it can be rendered in the time available. This will help to establish the most suitable location for day joints.
The final coat should be of uniform thickness and not used to even out irregularities, which should be accommodated in previous coats.
Factory-made renders
Factory-made renders should be applied in accordance with the manufacturer’s recommendations, including those for ancillary components.
Factory-made renders with a declared mix in accordance with Table 4, applied to the thickness recommended in Table 6, and that otherwise comply with the recommendations for site-made renders, will generally be acceptable to NHBC.
Table 6: Minimum thickness of factory-made single-coat renders
Notes
1 Lath backgrounds generally require two coats.
2 Alternative single-coat thicknesses may be acceptable when accompanied by appropriate third-party assessment in accordance with Technical Requirement R3.
Lime
Render mixes containing hydrated lime can improve the ability of the render to accommodate movement, improving resistance to cracking and crazing. The use of lime should be in accordance with BS EN 459.
Natural hydraulic lime (NHL) is used without cement, which can allow greater moisture vapour movement through the structure. Specialist advice may be required for the use of NHL render.