- Home
- 1 Welcome
- 2 Introduction
- 3 General
- 3.1 Concrete and its reinforcement
- 3.1.1 Compliance
- 3.1.2 Provision of information
- 3.1.3 Storage of materials
- 3.1.4 Site-mixed concrete
- 3.1.5 Ready-mixed concrete
- 3.1.6 Concrete specification
- 3.1.7 Admixtures
- 3.1.8 Special types of concrete
- 3.1.9 Design of reinforced concrete
- 3.1.10 Installation of reinforcement
- 3.1.11 Blinding concrete
- 3.1.12 Formwork
- 3.1.13 Before concreting
- 3.1.14 Casting
- 3.1.15 Curing
- 3.1.16 Testing
- 3.1.17 Glossary
- 3.2 Cold weather working
- 3.3 Timber preservation (natural solid timber)
- 3.1 Concrete and its reinforcement
- 4 Foundations
- 4.1 Land quality – managing ground conditions
- 4.1.1 Compliance
- 4.1.2 Initial Assessment – desk study (all sites)
- 4.1.3 Initial Assessment – walkover survey (all sites)
- 4.1.4 Initial Assessment – results
- 4.1.5 Basic Investigation (sites where hazards are not identified or suspected)
- 4.1.6 Detailed Investigation (sites where hazards are identified or suspected)
- 4.1.7 Managing the risks (sites where hazards are found)
- 4.1.8 Unforeseen hazards
- 4.1.9 Documentation and verification
- 4.1.10 Guidance for investigations
- 4.1.11 Further information
- 4.2 Building near trees
- 4.2.1 Compliance
- 4.2.2 Provision of information
- 4.2.3 Building near trees
- 4.2.4 The effects of trees on shrinkable soils
- 4.2.5 Foundations in all soil types
- 4.2.6 Excavation of foundations
- 4.2.7 Foundations in shrinkable soils
- 4.2.8 Design and construction of foundations in shrinkable soils
- 4.2.9 Foundation depths for specific conditions in shrinkable soils
- 4.2.10 Heave precautions
- 4.2.11 New drainage
- 4.2.12 Foundation depth charts
- 4.2.13 Foundation depth tables
- 4.2.14 Example
- 4.2.15 Further information
- 4.3 Strip and trench fill foundations
- 4.3.1 Compliance
- 4.3.2 Provision of information
- 4.3.3 Ground conditions
- 4.3.4 Hazardous ground
- 4.3.5 Setting out
- 4.3.6 Services and drainage
- 4.3.7 Safe transmission of loads
- 4.3.8 Sloping ground and stepped foundations
- 4.3.9 Excavations
- 4.3.10 Reinforcement
- 4.3.11 Concrete
- 4.3.12 Movement joints
- 4.3.13 Construction joints
- 4.4 Raft, pile, pier and beam foundations
- 4.4.1 Compliance
- 4.4.2 Provision of information
- 4.4.3 Site conditions
- 4.4.4 Hazardous ground
- 4.4.5 Services and drainage
- 4.4.6 Safe transmission of loads
- 4.4.7 Construction
- 4.4.8 Engineer checks
- 4.4.9 Compressible materials
- 4.4.10 Reinforcement
- 4.4.11 Concrete
- 4.4.12 Movement joints
- 4.4.13 Resistance to moisture
- 4.5 Vibratory ground improvement techniques
- 4.5.1 Compliance
- 4.5.2 Hazardous sites and ground hazards
- 4.5.3 Desk study and site investigation
- 4.5.4 Confirmation of suitability for treatment
- 4.5.5 Suitability of ground conditions
- 4.5.6 Compatibility of the ground, design and treatment
- 4.5.7 Acceptable methods
- 4.5.8 Materials for use as fill
- 4.5.9 Granular material
- 4.5.10 Sitework
- 4.5.11 Adjacent excavations
- 4.5.12 Verification of completed treatment
- 4.1 Land quality – managing ground conditions
- 5 Substructure, Ground Floors, Drainage and Basements
- 5.1 Substructure and ground-bearing floors
- 5.1.1 Compliance
- 5.1.2 Provision of information
- 5.1.3 Transfer of loads
- 5.1.4 Ground conditions
- 5.1.5 Services and drainage
- 5.1.6 Ground below fill
- 5.1.7 Fill below floors
- 5.1.8 Infill up to 600mm deep
- 5.1.9 Materials used for fill
- 5.1.10 Harmful or toxic materials
- 5.1.11 Regulatory solutions
- 5.1.12 Walls below the DPC
- 5.1.13 Durability
- 5.1.14 Mortar
- 5.1.15 Wall ties
- 5.1.16 Blinding
- 5.1.17 Ground floor slab and concrete
- 5.1.18 Laying the ground-bearing floor slab
- 5.1.19 Damp proof course
- 5.1.20 Damp proofing concrete floors
- 5.1.21 Thermal insulation
- 5.1.22 Installation of insulation
- 5.1.23 Further information
- 5.2 Suspended ground floors
- 5.2.1 Compliance
- 5.2.2 Provision of information
- 5.2.3 Contaminants
- 5.2.4 Proprietary systems
- 5.2.5 Transfer of loads: concrete floors
- 5.2.6 Reinforced concrete
- 5.2.7 Construction of suspended concrete ground floors
- 5.2.8 Transfer of loads: timber floors
- 5.2.9 Thermal insulation and cold bridging
- 5.2.10 Damp-proofing and ventilation
- 5.2.11 Floor finishes
- 5.2.12 Floor decking
- 5.3 Drainage below ground
- 5.3.1 Compliance
- 5.3.2 Provision of information
- 5.3.3 Preliminary work
- 5.3.4 Foul and surface water disposal
- 5.3.5 Drainage system performance
- 5.3.6 Ground water drainage
- 5.3.7 Design to avoid damage and blockages
- 5.3.8 Durability
- 5.3.9 Septic tanks and cesspools
- 5.3.10 Septic tank outputs
- 5.3.11 Surface water soakaways
- 5.3.12 Component requirements
- 5.3.13 Excavation
- 5.3.14 Protection of pipework
- 5.3.15 Laying pipework
- 5.3.16 Protection of work
- 5.3.17 Testing
- 5.4 Waterproofing of basements and other below ground structures
- 5.1 Substructure and ground-bearing floors
- 6 Superstructure (excluding roofs)
- 6.1 External masonry walls
- 6.1.1 Compliance
- 6.1.2 Provision of information
- 6.1.3 Structural design
- 6.1.4 Fire resistance
- 6.1.5 Acoustic resistance
- 6.1.6 Exposure
- 6.1.7 Thermal insulation
- 6.1.8 Concrete blocks
- 6.1.9 Bricks
- 6.1.10 Stone masonry
- 6.1.11 Construction of masonry walls
- 6.1.12 Lintels
- 6.1.13 Materials suitable for mortar
- 6.1.14 Mortar
- 6.1.15 Render
- 6.1.16 Cladding
- 6.1.17 DPCs and cavity trays
- 6.1.18 Wall ties and bed joint reinforcements
- 6.1.19 Handling materials
- 6.1.20 Protection of the works during construction
- 6.2 External timber framed walls
- 6.2.1 Compliance
- 6.2.2 Provision of information
- 6.2.3 Design checking and certification
- 6.2.4 Load-bearing walls
- 6.2.5 Fixing the frame
- 6.2.6 Nails and staples
- 6.2.7 Sheathing
- 6.2.8 Differential movement
- 6.2.9 Fire resistance
- 6.2.10 Protection from moisture
- 6.2.11 Timber preservation
- 6.2.12 Vapour control layers
- 6.2.13 Breather membranes
- 6.2.14 Wall ties and fixings
- 6.2.15 Insulation
- 6.3 Internal walls
- 6.3.1 Compliance
- 6.3.2 Provision of information
- 6.3.3 Supporting load-bearing internal walls
- 6.3.4 Masonry walls
- 6.3.5 Load-bearing timber walls
- 6.3.6 Fire resistance
- 6.3.7 Sound insulation
- 6.3.8 Partitions: internal non load-bearing
- 6.3.9 Construction of timber partitions
- 6.3.10 Construction of steel framed partitions
- 6.3.11 Construction of proprietary systems
- 6.3.12 Plasterboard
- 6.3.13 Damp-proof courses
- 6.3.14 Components
- 6.4 Timber and concrete upper floors
- 6.4.1 Compliance
- 6.4.2 Provision of information
- 6.4.3 Upper floor design
- 6.4.4 Fire spread
- 6.4.5 Sound insulation
- 6.4.6 In-situ concrete floors and concreting
- 6.4.7 Precast concrete
- 6.4.8 Timber joist spans
- 6.4.9 Timber joists
- 6.4.10 Construction of timber floors
- 6.4.11 Joists supported by intermediate walls
- 6.4.12 Joists connected to steel
- 6.4.13 Joists into hangers
- 6.4.14 Timber joist and restraint strap
- 6.4.15 Strutting
- 6.4.16 Joists and openings
- 6.4.17 Multiple joists
- 6.4.18 Notching and drilling
- 6.4.19 Floor decking
- 6.4.20 Floating floors or floors between homes
- 6.5 Steelwork
- 6.6 Staircases
- 6.6.1 Compliance
- 6.6.2 Provision of information
- 6.6.3 Fire precautions
- 6.6.4 Lighting
- 6.6.5 Glazing
- 6.6.6 Structural design
- 6.6.7 Headroom and width
- 6.6.8 Design of steps
- 6.6.9 Landings
- 6.6.10 Guarding
- 6.6.11 Handrails
- 6.6.12 Staircases made from timber and wood-based products
- 6.6.13 Concrete staircases
- 6.6.14 Steel staircases
- 6.6.15 Proprietary staircase units
- 6.6.16 Protection
- 6.7 Doors, windows and glazing
- 6.8 Fireplaces, chimneys and flues
- 6.8.1 Compliance
- 6.8.2 Provision of information
- 6.8.3 Solid fuel – fireplaces and hearths
- 6.8.4 Solid fuel – combustion air
- 6.8.5 Solid fuel – flue pipes
- 6.8.6 Solid fuel – chimneys
- 6.8.7 Solid fuel – outlets and terminals
- 6.8.8 Gas – fireplaces and hearths
- 6.8.9 Gas – combustion air
- 6.8.10 Gas – flue pipes
- 6.8.11 Gas – chimneys
- 6.8.12 Gas – outlets and terminals
- 6.8.13 Oil – fireplaces and hearths
- 6.8.14 Oil – combustion air
- 6.8.15 Oil – flue pipes
- 6.8.16 Oil – chimneys
- 6.8.17 Oil – outlets and terminals
- 6.8.18 All – fireplaces and hearths
- 6.8.19 All – fireplace surrounds
- 6.8.20 All – flue pipes
- 6.8.21 All – flue liners
- 6.8.22 All – flues
- 6.8.23 All – chimneys
- 6.8.24 Masonry
- 6.8.25 Mortar
- 6.8.26 DPC
- 6.8.27 Flashings
- 6.8.28 Terminals
- 6.8.29 Flue testing
- 6.8.30 Further information
- 6.9 Curtain walling and cladding
- 6.9.1 Compliance
- 6.9.2 Provision of information
- 6.9.3 Certification
- 6.9.4 Loads
- 6.9.5 Support and fixings
- 6.9.6 Durability
- 6.9.7 Interfaces
- 6.9.8 Insulation
- 6.9.9 Damp proofing and vapour control
- 6.9.10 Installation and tolerances
- 6.9.11 Electrical continuity and earth bonding
- 6.9.12 Maintenance
- 6.9.13 Glazing, gaskets and sealants
- 6.9.14 Cavity barriers and firestops
- 6.9.15 Ventilation screens
- 6.9.16 Handling and storage
- 6.9.17 Curtain walling
- 6.9.18 Rainscreen cladding
- 6.9.19 Insulated render and brick slip cladding
- 6.10 Light steel framed walls and floors
- 6.10.1 Compliance
- 6.10.2 Provision of information
- 6.10.3 Structural certification
- 6.10.4 Structural design of load-bearing floors and walls
- 6.10.5 Structural design of infill walls
- 6.10.6 Roofs
- 6.10.7 Steel and fixings
- 6.10.8 Detailing of steel joists
- 6.10.9 Restraint
- 6.10.10 Construction of load-bearing walls and external infill walls
- 6.10.11 Interfaces with staircases
- 6.10.12 Fixing floor decking and ceilings
- 6.10.13 Other design issues
- 6.10.14 Behaviour in relation to fire
- 6.10.15 Acoustic performance
- 6.10.16 Moisture control
- 6.10.17 Insulation
- 6.10.18 Vapour control layers
- 6.10.19 Breather membranes
- 6.10.20 Cladding, lining and sheathing boards
- 6.10.21 Wall ties
- 6.10.22 Services
- 6.10.23 Further information
- 6.11 Render
- 6.1 External masonry walls
- 7 Roofs
- 7.1 Flat roofs, terraces and balconies
- 7.1.1 Compliance
- 7.1.2 Provision of information
- 7.1.3 Flat roof, terrace and balcony general design
- 7.1.4 Drainage
- 7.1.5 Flat roof, terrace and balcony structural design
- 7.1.6 Timber structure and deck
- 7.1.7 Concrete decks
- 7.1.8 Profiled self-supporting metal decks
- 7.1.9 Profiled self-supporting metal roofing
- 7.1.10 Thermal insulation and vapour control
- 7.1.11 Waterproofing layer and surface treatments
- 7.1.12 Green and biodiverse (brown roofs) – including roof gardens
- 7.1.13 Blue roofs
- 7.1.14 Raised Podium
- 7.1.15 Detailing of flat roofs
- 7.1.16 Accessible thresholds and upstands
- 7.1.17 Parapets and guarding to terraces and balconies
- 7.2 Pitched roofs
- 7.2.1 Compliance
- 7.2.2 Provision of information
- 7.2.3 Design of pitched roofs
- 7.2.4 Protection of trusses
- 7.2.5 Durability
- 7.2.6 Wall plates
- 7.2.7 Joints and connections
- 7.2.8 Restraint
- 7.2.9 Bracing for trussed rafter roofs
- 7.2.10 Strutting for attic trusses and cut roofs that form a floor
- 7.2.11 Support for equipment
- 7.2.12 Access
- 7.2.13 Dormer construction
- 7.2.14 Underlay and sarking
- 7.2.15 Ventilation, vapour control and insulation
- 7.2.16 Firestopping and cavity barriers
- 7.2.17 Battens
- 7.2.18 Roof coverings
- 7.2.19 Fixing tiles and slates
- 7.2.20 Weathering details
- 7.2.21 Valleys and hidden gutters
- 7.2.22 Drainage
- 7.2.23 Fascias and trim
- 7.2.24 Spandrel panels in cold roofs
- 7.1 Flat roofs, terraces and balconies
- 8 Services
- 8.1 Internal services
- 8.1.1 Compliance
- 8.1.2 Provision of information
- 8.1.3 Water services and supply
- 8.1.4 Cold water storage
- 8.1.5 Hot water service
- 8.1.6 Soil and waste systems
- 8.1.7 Electrical services and installations
- 8.1.8 Gas service installations
- 8.1.9 Meters
- 8.1.10 Space heating systems
- 8.1.11 Installation
- 8.1.12 Extract ducts
- 8.1.13 Testing and commissioning
- 8.2 Low or zero carbon technologies
- 8.2.1 Compliance
- 8.2.2 Provision of information
- 8.2.3 Clean Air Act
- 8.2.4 System design
- 8.2.5 Access
- 8.2.6 Handling, storage and protection
- 8.2.7 Sequence of work
- 8.2.8 Location
- 8.2.9 Building integration
- 8.2.10 Fixing
- 8.2.11 Electrical installation requirements
- 8.2.12 Pipes, insulation and protection from cold
- 8.2.13 Ground collectors
- 8.2.14 Fuel storage
- 8.2.15 Safe discharge
- 8.2.16 Testing and commissioning
- 8.2.17 Handover requirements
- 8.2.18 Further information
- 8.3 Mechanical ventilation with heat recovery
- 8.1 Internal services
- 9 Finishes
- 9.1 A consistent approach to finishes
- 9.1.1 Compliance
- 9.1.2 External walls
- 9.1.3 Internal walls and ceilings
- 9.1.4 Doors and windows
- 9.1.5 Floors
- 9.1.6 Glazing
- 9.1.7 Ceramic, concrete, terrazzo and similar tile finishes
- 9.1.8 Fitted furniture
- 9.1.9 Joint sealants
- 9.1.10 Paint finishes
- 9.1.11 Sanitary ware
- 9.1.12 Other surfaces and components
- 9.1.13 Pitched roof coverings
- 9.1.14 Garages
- 9.1.15 External works
- 9.2 Wall and ceiling finishes
- 9.3 Floor finishes
- 9.4 Finishes and fitments
- 9.5 Painting and decorating
- 9.1 A consistent approach to finishes
- 10 External works
- 10.1 Garages
- 10.2 Drives, paths and landscaping
- 10.2.1 Compliance
- 10.2.2 Provision of information
- 10.2.3 Stability
- 10.2.4 Freestanding walls and retaining structures
- 10.2.5 Guarding and steps
- 10.2.6 Drives, paths and landscaping
- 10.2.7 Materials
- 10.2.8 Garden areas within 3m of the home
- 10.2.9 Garden areas
- 10.2.10 Timber decking
- 10.2.11 Landscaping
4.1.1Compliance
Assessment of the site and the surrounding area shall comply with the Technical Requirements. Items to be taken into account include:
- suitability of persons for the level of investigation
- geotechnical and contamination issues
- investigation procedures
- notification in writing to NHBC of hazardous ground conditions.
Ground investigations and management of risk that complies with the guidance in this chapter will generally be acceptable.
Suitable persons for the level of investigation
The following skills and knowledge are required from the person responsible for the Initial Assessment, Basic Investigation and documentation and verification. They should:
- understand the hazards that can affect the development and where they originate
- recognise the signs of potential hazards
- conduct a desk study and walkover survey
- collect information relating to such hazards on and adjacent to the site
- report the findings in a clear and concise manner
- determine when specialist advice and detailed testing is required.
- the site has been properly assessed and investigated
- where necessary, suitable precautions are incorporated into the design
- all necessary remediation has been carried out.
The following criteria should be used as guidance for the appointment of a consultant or specialist responsible for Detailed Investigation, management of hazards, documentation and verification:
Experience | Similar types of site and development. |
Appropriate discipline(s) | Understanding of all relevant skills required on the project and access to other disciplines, including geologists, hydrogeologists, toxicologists and environmental chemists. |
Legislation | Understanding of legislation and liabilities associated with the site. |
Professional indemnity insurance | Appropriate cover for the work being carried out. |
Health and safety | Awareness of occupational hygiene issues and Health and Safety legislation. |
Quality assurance | Use of a quality management system, including appropriately accredited laboratories. |
Project management | Ability to manage a project team consisting of the appropriate disciplines. |
Site investigation | Ability to design site investigation programmes, including soil sampling, testing and laboratory analysis. |
Risk management | Ability to conduct risk assessments as required by the risk management process. |
Reporting and communication | Ability to prepare comprehensive and well presented reports. Effective communication within their organisation and with the client, statutory authorities and the general public. |
Engineering design | Understanding of effective risk reduction techniques, e.g. engineered foundations and substructure details of suitable remediation. |
Geotechnical and contamination issues
Assessment should be carried out by direct investigation and examination of the ground, supplemented by laboratory testing where necessary, in order to determine the geotechnical and contamination characteristics of the site.
Specifically, where contamination is suspected or found, the site should be assessed using the Source-Pathway-Receptor framework (known as the pollutant linkage).
For land contamination to occur, a source, pathway and receptor must all exist. A written or diagrammatic representation of the land contamination (known as a Conceptual Model), should be produced to show the possible relationships between each.
Procedure
The process to assess and manage the ground conditions is as follows:
Initial Assessment
NHBC requires all sites to be assessed by a desk study and a walkover survey. The results should be used to determine whether or not hazards are known or suspected.
Basic Investigation
Required to support the results of the Initial Assessment where hazards are not suspected.
Detailed Investigation
Required where hazards are known or suspected.
Further Assessment
Required after the Basic or Detailed Investigation has been conducted, to confirm that all objectives have been met. Where results are inconclusive, further investigation will be required.
Hazards
Where hazards are identified, design precautions or remediation will be required to minimise their effects.
If any unforeseen hazards are found during the course of construction, further investigation is likely to be required.
Documentation and verification
NHBC requires documentation and verification to show that:
Notification of potential hazards and associated risks
If a site (defined in the Rules as an area of land that is covered by a single detailed planning consent or series of consents relating to continuous development) is classed as ‘hazardous’, NHBC must be notified in writing a minimum of eight weeks before work starts. Failure to provide such information may delay the registration process, the construction work and the issuing of NHBC warranty.
Table 1: Potential hazards and associated risks
Potential hazard | Associated risk |
---|---|
High water table or low-lying land | ■ flooding ■ the effects from toxic or noxious materials which could be concentrated or transported by ground water. |
Mining (past, present and proposed) | ■ ground movement as a result of the type of mining and materials extracted ■ ground gasses, including methane and carbon dioxide. |
Trees | ■ shrinkage and heave of clay soils ■ physical damage caused by roots. |
Peat | ■ acid attack ■ changes in volume due to variations in moisture content ■ production of methane and carbon dioxide. |
Infill and made ground, including tipping | ■ release of gases which may be explosive or asphyxiating ■ low bearing capacity causing excessive total and/or differential settlements ■ consolidation characteristics which may result in subsidence, settlement and/or excessive tilt ■ localised ground variability (laterally and with depth) which may result in subsidence, settlement and/or excessive tilt ■ collapse compression or inundation settlement of non-cohesive fills which may result in subsidence, settlement and/or excessive tilt. |
Low bearing capacity ground | ■ settlement of foundations and substructures. |
Former buildings or structures | ■ underground obstructions producing variations in bearing capacity and settlement characteristics. |
Adjacent buildings | ■ effect on stability of both new and existing buildings. |
Drains, including land drains | ■ contamination, flooding, waterlogging and interruption of land drainage systems. |
Sulfates in ground or ground water | ■ expansive reaction ■ chemical attack on concrete, mortar and bricks or blocks made with cement. |
Contamination | ■ from substances which may be carcinogenic, toxic, asphyxiating, corrosive, phytotoxic, combustive, explosive or radioactive. |
Solution features in chalk and limestone, including swallow holes | ■ underground cavities. |
Unstable ground subject to landslip | ■ ground movement. |
Seas, lakes and rivers adjacent to land | ■ erosion ■ exposure to saline. |